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Product Overview
The Robust Control Toolbox™ product is a collection of functions and tools that 
help you analyze and design multiinput-multioutput (MIMO) control systems 
with uncertain elements. You can build uncertain LTI system models 
containing uncertain parameters and uncertain dynamics. You get tools to 
analyze MIMO system stability margins and worst case performance.

The toolbox includes a selection of control synthesis tools that compute 
controllers that optimize worst-case performance and identify worst-case 
parameter values. The toolbox lets you simplify and reduce the order of 
complex models with model reduction tools that minimize additive and 
multiplicative error bounds. It provides tools for implementing advanced 
robust control methods like H∞, H2, linear matrix inequalities (LMI), and 
μ-synthesis robust control. You can shape MIMO system frequency responses 
and design uncertainty tolerant controllers.

Required Software
Robust Control Toolbox software requires that you have installed Control 
System Toolbox™ software.
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Modeling Uncertainty
At the heart of robust control is the concept of an uncertain LTI system. Model 
uncertainty arises when system gains or other parameters are not precisely 
known, or can vary over a given range. Examples of real parameter 
uncertainties include uncertain pole and zero locations and uncertain gains. 
You can also have unstructured uncertainties, by which is meant complex 
parameter variations satisfying given magnitude bounds.

With Robust Control Toolbox™ software you can create uncertain LTI models 
as MATLAB® objects specifically designed for robust control applications. You 
can build models of complex systems by combining models of subsystems using 
addition, multiplication, and division, as well as with Control System 
Toolbox™ commands like feedback and lft.

Example: ACC Benchmark Problem
For instance, consider the two-cart “ACC Benchmark” system [13] consisting of 
two frictionless carts connected by a spring shown as follows.

ACC Benchmark Problem

The system has the block diagram model shown below, where the individual 
carts have the respective transfer functions.

G1(s) = ; G2(s) = .

The parameters m1, m2, and k are uncertain, equal to one plus or minus 20%:

m1 ���
��

��
����

m2�

� �

� � ��

Position
x1

Position
Measurement

x2 = y1Control
Force

u1

Spring k

1

m1s2
-------------- 1

m2s2
--------------
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m1 = 1±0.2 
m2 = 1±0.2 
k = 1±0.2

“ACC Benchmark” Two-Cart System Block Diagram y1 = P(s) u1

The upper dashed-line block has transfer function matrix.

This code builds the uncertain system model P shown above:

% Create the uncertain real parameters m1, m2, & k
m1 = ureal('m1',1,'percent',20); 
m2 = ureal('m2',1,'percent',20);
k  = ureal('k',1,'percent',20);

s = zpk('s'); % create the Laplace variable s
G1 = ss(1/s^2)/m1; % Cart 1
G2 = ss(1/s^2)/m2; % Cart 2

% Now build F and P
F = [0;G1]*[1 -1]+[1;-1]*[0,G2]; 
P = lft(F,k) % close the loop with the spring k

G1(s) G2(s) 
f1 f2x1 x2u1

u2

y1

y2

-
-

+

+

k

F(s)

Cart 1 Cart 2

P(s)

Σ

Σ

Spring

F s( ) 0
G1 s( ) 1 1–

1
1–

0 G2 s( )+=
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The variable P is a SISO uncertain state-space (USS) object with four states 
and three uncertain parameters, m1, m2, and k. You can recover the nominal 
plant with the command

zpk(P.nominal)

which returns

Zero/pole/gain:
      1
--------------
s^2 (s^2  + 2)

If the uncertain model P(s) has LTI negative feedback controller

then you can form the controller and the closed-loop system y1 = T(s) u1 and 
view the closed-loop system's step response on the time interval from t=0 to 
t=0.1 for a Monte Carlo random sample of five combinations of the three 
uncertain parameters k, m1, and m2 using this code:

C=100*ss((s+1)/(.001*s+1))^3 % LTI controller
T=feedback(P*C,1); % closed-loop uncertain system
step(usample(T,5),.1);

C s( ) 100 s 1+( )3

0.001s 1+( )3
-----------------------------------=

Σ PC
r y1u1
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The resulting plot is shown below.

Monte Carlo Sampling of Uncertain System's Step Response
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Worst-Case Performance
To be robust, your control system should meet your stability and performance 
requirements for all possible values of uncertain parameters. Monte Carlo 
parameter sampling via usample can be used for this purpose as shown in 
“Monte Carlo Sampling of Uncertain System’s Step Response” on page 1-6, but 
Monte Carlo methods are inherently hit or miss. With Monte Carlo methods, 
you might need to take an impossibly large number of samples before you hit 
upon or near a worst-case parameter combination.

Robust Control Toolbox™ software gives you a powerful assortment of 
robustness analysis commands that let you directly calculate upper and lower 
bounds on worst-case performance without random sampling.

Example: ACC Two-Cart Benchmark Problem
Returning to the “Example: ACC Benchmark Problem” on page 1-3, the closed 
loop system is:

T=feedback(P*C,1); % Closed-loop uncertain system

This uncertain state-space model T has three uncertain parameters, k, m1, and 
m2, each equal to 1±20% uncertain variation. To analyze whether the 
closed-loop system T is robustly stable for all combinations of values for these 
three parameters, you can execute the commands:

Worst-Case Robustness Analysis Commands

loopmargin Comprehensive analysis of feedback loop

loopsens Sensitivity functions of feedback loop

ncfmargin Normalized coprime stability margin of feedback loop

robustperf Robust performance of uncertain systems

robuststab Stability margins of uncertain systems

wcgain Worst-case gain of an uncertain system

wcmargin Worst-case gain/phase margins for feedback loop

wcsens Worst-case sensitivity functions of feedback loop
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[StabilityMargin,Udestab,REPORT] = robuststab(T);
REPORT

This displays the REPORT:

Uncertain System is robustly stable to modeled uncertainty.            
 -- It can tolerate up to 311% of modeled uncertainty.                 
 -- A destabilizing combination of 500% the modeled uncertainty exists,
    causing an instability at 44.3 rad/s.                              

The report tells you that the control system is robust for all parameter 
variations in the ±20% range, and that the smallest destabilizing combination 
of real variations in the values k, m1, and m2 has sizes somewhere between 
311% and 500% greater than ±20%, i.e., between ±62.2% and ±100%. The value 
Udestab returns an estimate of the 500% destabilizing parameter variation 
combination:

Udestab = 
     k: 1.2174e-005
    m1: 1.2174e-005
    m2: 2.0000. 

Uncertain System Closed-Loop Bode Plots
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You have a comfortable safety margin of between 311% to 500% larger than the 
anticipated ±20% parameter variations before the closed loop goes unstable. 
But how much can closed-loop performance deteriorate for parameter 
variations constrained to lie strictly within the anticipated ±20% range? The 
following code computes worst-case peak gain of T, and estimates the frequency 
and parameter values at which the peak gain occurs:

[PeakGain,Uwc] = wcgain(T);
Twc=usubs(T,Uwc); % Worst case closed-loop system T
Trand=usample(T,4); % 4 random samples of uncertain system T
bodemag(Twc,'r',Trand,'b-.',{.5,50}); % Do bode plot
legend('T_{wc}   - worst-case',...

'T_{rand} - random samples',3);

The resulting plot is shown in “Uncertain System Closed-Loop Bode Plots” on 
page 1-8.
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Synthesis of Robust MIMO Controllers
You can design controllers for multiinput-multioutput (MIMO) LTI models 
with your Robust Control Toolbox™ software using the following command.

Example: Designing a Controller with LOOPSYN
One of the most powerful yet simple controller synthesis tools is loopsyn. 
Given an LTI plant, you specify the shape of the open-loop systems frequency 
response plot that you want, then loopsyn computes a stabilizing controller 
that best approximates your specified loop shape.

For example, consider the 2-by-2 NASA HiMAT aircraft model (Safonov, Laub, 
and Hartmann [8]) depicted in the following figure. The control variables are 
elevon and canard actuators (δe and δc). The output variables are angle of 
attack (α) and attitude angle (θ). The model has six states, viz.

Robust Control Synthesis Commands

h2hinfsyn  Mixed H2/H∞ controller synthesis

h2syn  H2 controller synthesis

hinfsyn  H∞ controller synthesis

loopsyn  H∞ loop-shaping controller synthesis

ltrsyn  Loop-transfer recovery controller synthesis

mixsyn  H∞ mixed-sensitivity controller synthesis

ncfsyn  H∞ normalized coprime factor controller synthesis

sdhinfsyn  Sampled-data H∞ controller synthesis
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Aircraft Configuration and Vertical Plane Geometry
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You can enter the state-space matrices for this model with the following code:

% NASA HiMAT model G(s)
ag =[ -2.2567e-02  -3.6617e+01  -1.8897e+01  -3.2090e+01   3.2509e+00  -7.6257e-01;

9.2572e-05  -1.8997e+00   9.8312e-01  -7.2562e-04  -1.7080e-01  -4.9652e-03;

1.2338e-02   1.1720e+01  -2.6316e+00   8.7582e-04  -3.1604e+01   2.2396e+01;

0            0   1.0000e+00            0            0            0;

0            0            0            0  -3.0000e+01            0;

0            0            0            0            0  -3.0000e+01];

bg = [ 0     0;

0     0;

0     0;

0     0;

30     0;

0    30];

cg = [ 0     1     0     0     0     0;

0     0     0     1     0     0];

dg = [ 0     0;

0     0];

G=ss(ag,bg,cg,dg);

To design a controller to shape the frequency response (sigma) plot so that the 
system has approximately a bandwidth of 10 rad/s, you can set as your target 
desired loop shape Gd(s)=10/s, then use loopsyn(G,Gd) to find a loop-shaping 
controller for G that optimally matches the desired loop shape Gd by typing:

s=zpk('s'); w0=10; Gd=w0/(s+.001);
[K,CL,GAM]=loopsyn(G,Gd); % Design a loop-shaping controller K

% Plot the results
sigma(G*K,'r',Gd,'k-.',Gd/GAM,'k:',Gd*GAM,'k:',{.1,30})
figure ;T=feedback(G*K,eye(2)); 
sigma(T,ss(GAM),'k:',{.1,30});grid

The value of γ = GAM returned is an indicator of the accuracy to which the 
optimal loop shape matches your desired loop shape and is an upper bound on 
the resonant peak magnitude of the closed-loop transfer function 
T=feedback(G*K,eye(2)). In this case, γ = 1.6024 = 4 dB — see the next figure.
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MIMO Robust Loop Shaping with loopsyn(G,Gd)

The achieved loop shape matches the desired target Gd to within about γ dB.
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Model Reduction and Approximation
Complex models are not always required for good control. Unfortunately, 
however, optimization methods (including methods based on H∞, H2, and 
μ-synthesis optimal control theory) generally tend to produce controllers with 
at least as many states as the plant model. For this reason, Robust Control 
Toolbox™ software offers you an assortment of model-order reduction 
commands that help you to find less complex low-order approximations to plant 
and controller models.

Among the most important types of model reduction methods are minimize 
bounds methods on additive, multiplicative, and normalized coprime factor 
(NCF) model error. You can access all three of these methods using the 
command reduce.

Example: NASA HiMAT Controller Order Reduction
For instance, the NASA HiMAT model considered in the last section has eight 
states, and the optimal loop-shaping controller turns out to have 16 states. 
Using model reduction, you can remove at least some of the states without 
appreciably affecting stability or closed-loop performance. For controller order 

Model Reduction Commands

reduce Main interface to model approximation algorithms

balancmr Balanced truncation model reduction

bstmr Balanced stochastic truncation model reduction

hankelmr Optimal Hankel norm model approximations

modreal State-space modal truncation/realization

ncfmr Balanced normalized coprime factor model reduction

schurmr Schur balanced truncation model reduction

slowfast State-space slow-fast decomposition

stabproj State-space stable/antistable decomposition

imp2ss Impulse response to state-space approximation
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reduction, the NCF model reduction is particularly useful, and it works equally 
well with controllers that have poles anywhere in the complex plane.

For the NASA HiMAT design in the last section, you can type

hankelsv(K,'ncf','log');

which displays a logarithmic plot of the NCF Hankel singular values — see the 
following figure.

Hankel Singular Values of Coprime Factorization of K

Theory says that, without danger of inducing instability, you can confidently 
discard at least those controller states that have NCF Hankel singular values 
that are much smaller than ncfmargin(G,K).

Compute ncfmargin(G,K) and add it to your Hankel singular values plot.

hankelsv(K,'ncf','log');v=axis;
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hold on; plot(v(1:2), ncfmargin(G,K)*[1 1],'--'); hold off

Five of the 16 NCF Hankel Singular Values of HiMAT Controller K Are Small 
Compared to ncfmargin(G,K)

In this case, you can safely discard 5 of the 16 states of K and compute an 
11-state reduced controller by typing:

K1=reduce(K,11,'errortype','ncf');

The result is plotted in the following figure.

sigma(G*K1,'b',G*K,'r--',{.1,30});
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HiMAT with 11-State Controller K1 vs. Original 16-State Controller K

The picture above shows that low-frequency gain is decreased considerably for 
inputs in one vector direction. Although this does not affect stability, it affects 
performance. If you wanted to better preserve low-frequency performance, you 
would discard fewer than five of the 16 states of K.
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LMI Solvers
At the core of many emergent robust control analysis and synthesis routines 
are powerful general-purpose functions for solving a class of convex nonlinear 
programming problems known as linear matrix inequalities. The LMI 
capabilities are invoked by Robust Control Toolbox™ software functions that 
evaluate worst-case performance, as well as functions like hinfsyn and 
h2hinfsyn. Some of the main functions that help you access the LMI 
capabilities of the toolbox are shown in the following table.

Complete documentation is available in “The LMI Lab” on page 4-1.

Specification of LMIs

lmiedit GUI for LMI specification

setlmis Initialize the LMI description

lmivar Define a new matrix variable

lmiterm Specify the term content of an LMI

newlmi Attach an identifying tag to new LMIs

getlmis Get the internal description of the LMI system

LMI Solvers

feasp Test feasibility of a system of LMIs

gevp Minimize generalized eigenvalue with LMI constraints

mincx Minimize a linear objective with LMI constraints

dec2mat Convert output of the solvers to values of matrix variables

Evaluation of LMIs/Validation of Results

evallmi Evaluate for given values of the decision variables

showlmi Return the left and right sides of an evaluated LMI
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Extends Control System Toolbox™ Capabilities
Robust Control Toolbox™ software is designed to work with Control System 
Toolbox™ software. Robust Control Toolbox software extends the capabilities 
of Control System Toolbox software and leverages the LTI and plotting 
capabilities of Control System Toolbox software. The major analysis and 
synthesis commands in Robust Control Toolbox software accept LTI object 
inputs, e.g., LTI state-space systems produced by commands such as:

G=tf(1,[1 2 3])
G=ss([-1 0; 0 -1], [1;1],[1 1],3)

The uncertain system (USS) objects in Robust Control Toolbox software 
generalize the Control System Toolbox LTI SS objects and help ease the task of 
analyzing and plotting uncertain systems. You can do many of the same 
algebraic operations on uncertain systems that are possible for LTI objects 
(multiply, add, invert), and Robust Control Toolbox software provides USS 
uncertain system extensions of Control System Toolbox software 
interconnection and plotting functions like feedback, lft, and bode.
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Tradeoff Between Performance and Robustness
When the plant modeling uncertainty is not too big, you can design high-gain, 
high-performance feedback controllers. High loop gains significantly larger 
than 1 in magnitude can attenuate the effects of plant model uncertainty and 
reduce the overall sensitivity of the system to plant noise. But if your plant 
model uncertainty is so large that you do not even know the sign of your plant 
gain, then you cannot use large feedback gains without the risk that the system 
will become unstable. Thus, plant model uncertainty can be a fundamental 
limiting factor in determining what can be achieved with feedback.

Multiplicative Uncertainty:  Given an approximate model of the plant G0 of 
a plant G, the multiplicative uncertainty ΔM of the model G0 is defined
as

or, equivalently,

Plant model uncertainty arises from many sources. There might be small 
unmodeled time delays or stray electrical capacitance. Imprecisely understood 
actuator time constants or, in mechanical systems, high-frequency torsional 
bending modes and similar effects can be responsible for plant model 
uncertainty. These types of uncertainty are relatively small at lower 
frequencies and typically increase at higher frequencies.

In the case of single-input/single-output (SISO) plants, the frequency at which 
there are uncertain variations in your plant of size|ΔM|=2 marks a critical 
threshold beyond which there is insufficient information about the plant to 
reliably design a feedback controller. With such a 200% model uncertainty, the 
model provides no indication of the phase angle of the true plant, which means 
that the only way you can reliably stabilize your plant is to ensure that the loop 
gain is less than 1. Allowing for an additional factor of 2 margin for error, your 
control system bandwidth is essentially limited to the frequency range over 
which your multiplicative plant uncertainty ΔM has gain magnitude |ΔM|<1.

ΔM G0
1–

G G0–( )=

G I ΔM+( )G0""=
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Norms and Singular Values
For MIMO systems the transfer functions are matrices, and relevant measures 
of gain are determined by singular values, H∞, and H2 norms, which are 
defined as follows:

H2 and H∞ Norms:   The H2-norm is the energy of the impulse response of 
plant G. The H∞-norm is the peak gain of G across all frequencies and all 
input directions.

Another important concept is the notion of singular values.

Singular Values:   The singular values of a rank r matrix , 
denoted , are the nonnegative square roots of the eigenvalues of  
ordered such that . 

If r < p then there are p – r zero singular values, i.e.,

 

The greatest singular value  is sometimes denoted .

When A is a square n-by-n matrix, then the nth singular value (i.e., the least 
singular value) is denoted .

Properties of Singular Values
Some useful properties of singular values are:

These properties are especially important because they establish that the 
greatest and least singular values of a matrix A are the maximal and minimal 
“gains” of the matrix as the input vector x varies over all possible directions.

A Cm n×∈
σi A*A

σ1 σ2 … σp≥ ≥ ≥ 0    p ,> min m n,{ }≤

σr 1+ σr 2+ … σp 0= = = =

σ1 σ A( ) = σ1

σ A( ) Δ= σn

σ A( ) max= Ax
x

------------
x C∈ n

σ A( ) min= Ax
x

------------
x C∈ n



2 Multivariable Loop Shaping

2-4

For stable continuous-time LTI systems , the H2-norm and the H∞-norms 

are defined terms of the frequency-dependent singular values of :

H2-norm:

H∞-norm:

G s( )

G jω( )

G 2
Δ= 1

2π
------ σi G jω( )( )( )

i 1=

p

∑
∞–

∞

∫ d2 ω

G ∞
Δ

ω
= supσ G jω( )( )    sup:  the least upper bound( )
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Typical Loop Shapes, S and T Design
Consider the multivariable feedback control system shown in the following 
figure. In order to quantify the multivariable stability margins and 
performance of such systems, you can use the singular values of the closed-loop 
transfer function matrices from r to each of the three outputs e, u, and y, viz.

where the L(s) is the loop transfer function matrix

 (2-1)

Block Diagram of the Multivariable Feedback Control System

The two matrices S(s) and T(s) are known as the sensitivity function and 
complementary sensitivity function, respectively. The matrix R(s) has no 
common name. The singular value Bode plots of each of the three transfer 
function matrices S(s), R(s), and T(s) play an important role in robust 
multivariable control system design. The singular values of the loop transfer 
function matrix L(s) are important because L(s) determines the matrices S(s) 
and T(s).

Singular Values
The singular values of S(jω) determine the disturbance attenuation, because 
S(s) is in fact the closed-loop transfer function from disturbance d to plant 
output y — see “Block Diagram of the Multivariable Feedback Control System” 

S s( ) def I L s( )+( ) 1–=

R s( ) def K s( ) I L s( )+( ) 1–=

T s( ) def L s( ) I L s( )+( ) 1– I S s( )–= =

L s( ) G= s( )K s( )

output
yr

command +

-

+
+

K(s)              G(s)

dplant
disturbance

"plant"
"controller"

e
error

u
control effects
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on page 2-5. Thus a disturbance attenuation performance specification can be 
written as

(2-2)

where is the desired disturbance attenuation factor. Allowing 

 to depend on frequency ω enables you to specify a different 

attenuation factor for each frequency ω.

The singular value Bode plots of R(s) and of T(s) are used to measure the 
stability margins of multivariable feedback designs in the face of additive plant 
perturbations  and multiplicative plant perturbations , respectively. See 
the following figure. 

Consider how the singular value Bode plot of complementary sensitivity T(s) 
determines the stability margin for multiplicative perturbations . The 
multiplicative stability margin is, by definition, the “size” of the smallest stable 

(s) that destabilizes the system in the figure below when .

Additive/Multiplicative Uncertainty

σ S jω( )( ) W1
1– jω( )≤

W1
1– jω( )

W1 jω( )

ΔA ΔM

ΔM

ΔM ΔA 0=

Ι + ΔA(s)Σ ΣK(s) G(s)

ΔA(s)

Perturbed Plant

+

-

+ +
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Taking  to be the definition of the “size” of , you have the 
following useful characterization of “multiplicative” stability robustness:

Multiplicative Robustness:  The size of the smallest destabilizing 
multiplicative uncertainty (s) is

The smaller is , the greater will be the size of the smallest 
destabilizing multiplicative perturbation, and hence the greater will be the 
stability margin.

A similar result is available for relating the stability margin in the face of 
additive plant perturbations (s) to R(s) if you take  to be the 
definition of the “size” of  at frequency ω.

Additive Robustness:  The size of the smallest destabilizing additive 
uncertainty  is

As a consequence of robustness theorems 1 and 2, it is common to specify the 
stability margins of control systems via singular value inequalities such as

(2-3)

(2-4)

where  and  are the respective sizes of the largest 
anticipated additive and multiplicative plant perturbations.

It is common practice to lump the effects of all plant uncertainty into a single 
fictitious multiplicative perturbation , so that the control design 
requirements can be written

σ ΔM jω( )( ) ΔM jω( )

ΔM

σ ΔM jω( )( ) 1
σ T jω( )( )
------------------------=

σ T jω( )( )

ΔA σ ΔA jω( )( )
ΔA jω( )( )

ΔA

σ ΔA jω( )( ) 1
σ R jω( )( )
------------------------=

σ R jω{ }( ) W2
1– jω( )≤

σ T jω{ }( ) W3
1– jω( )≤

W2 jω( ) W3 jω( )

ΔM
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as shown in “Singular Value Specifications on L, S, and T” on page 2-9.

It is interesting to note that in the upper half of the figure (above the 0 dB line),

while in the lower half of “Singular Value Specifications on L, S, and T” on 
page 2-9 (below the 0 dB line),

 

This results from the fact that

1
σi S jω( )( )
-------------------------- W1 jω( )≥ ; σi T jω[ ]( ) W3

1– jω( )≤

σ L jω( )( ) 1
σ S jω( )( )
------------------------≈

σ L jω( )( ) σ≈ T jω( )( )

S s( )def I L s( )+( ) 1–= L≈ s( ) 1– ,   if σ L s( )( ) 1»

T s( )def L= s( ) I L s( )+( ) 1– L≈ s( ),   if σ L s( )( ) 1«
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Singular Value Specifications on L, S, and T

Thus, it is not uncommon to see specifications on disturbance attenuation and 
multiplicative stability margin expressed directly in terms of forbidden regions 
for the Bode plots of  as “singular value loop shaping” requirements, 
either as specified upper/lower bounds or as a target desired loop shape — see 
the preceding figure.

Guaranteed Gain/Phase Margins in MIMO Systems
For those who are more comfortable with classical single-loop concepts, there 
are the important connections between the multiplicative stability margins 
predicted by  and those predicted by classical M-circles, as found on the 
Nichols chart. Indeed in the single-input/single-output case,

which is precisely the quantity you obtain from Nichols chart M-circles. Thus, 
 is a multiloop generalization of the closed-loop resonant peak magnitude 

which, as classical control experts will recognize, is closely related to the 

1

-1

|W |

3
|W |

w

o(L)

o(T)

1

o(S)

o(L)

PERFORMANCE
BOUND

ROBUSTNESS
BOUND

0 db

|Gd| DESIRED LOOPSHAPE

DESIRED CROSSOVER ωc

.

σi L jω( )( )

σ T( )

σ T jω( )( ) L jω( )
1 L jω( )+
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damping ratio of the dominant closed-loop poles. Also, it turns out that you can 
relate ,  to the classical gain margin GM and phase margin  in each 
feedback loop of the multivariable feedback system of “Block Diagram of the 
Multivariable Feedback Control System” on page 2-5 via the formulas [6].

These formulas are valid provided  and  are larger than 1, as is 
normally the case. The margins apply even when the gain perturbations or 
phase perturbations occur simultaneously in several feedback channels.

The infinity norms of S and T also yield gain reduction tolerances. The gain 
reduction tolerance gm is defined to be the minimal amount by which the gains 
in each loop would have to be decreased in order to destabilize the system. 
Upper bounds on gm are as follows:

T ∞ S ∞ θM

GM 1≥ 1
T ∞

------------+

GM 1≥ 1
1 1– S ∞⁄
-----------------------------+

θM 2 1
2 T ∞
----------------⎝ ⎠

⎛ ⎞1–
sin≥

θM 2 1
2 S ∞
----------------⎝ ⎠

⎛ ⎞1–
sin≥

S ∞ T ∞

gm 1≤ 1
T ∞

------------–

gm
1

1 1+ S ∞⁄
-----------------------------≤
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Using LOOPSYN to Do H-Infinity Loop Shaping
The command loopsyn lets you design a stabilizing feedback controller to 
optimally shape the open loop frequency response of a MIMO feedback control 
system to match as closely as possible a desired loop shape Gd — see the 
preceding figure. The basic syntax of the loopsyn loop-shaping controller 
synthesis command is:

K = loopsyn(G,Gd)

Here G is the LTI transfer function matrix of a MIMO plant model, Gd is the 
target desired loop shape for the loop transfer function L=G*K, and K is the 
optimal loop-shaping controller. The LTI controller K has the property that it 
shapes the loop L=G*K so that it matches the frequency response of Gd as closely 
as possible, subject to the constraint that the compensator must stabilize the 
plant model G.

Example: NASA HiMAT Loop Shaping
To see how the loopsyn command works in practice to address robustness and 
performance tradeoffs, consider again the NASA HiMAT aircraft model taken 
from the paper of Safonov, Laub, and Hartmann [8]. The longitudinal dynamics 
of the HiMAT aircraft trimmed at 25000 ft and 0.9 Mach are unstable and have 
two right-half-plane phugoid modes. The linear model has state-space 
realization  with six states, with the first four states 
representing angle of attack (α) and attitude angle (θ) and their rates of 
change, and the last two representing elevon and canard control actuator 
dynamics — see “Aircraft Configuration and Vertical Plane Geometry” on 
page 2-12.

ag =[
-2.2567e-02  -3.6617e+01  -1.8897e+01  -3.2090e+01   3.2509e+00  -7.6257e-01;
9.2572e-05  -1.8997e+00   9.8312e-01  -7.2562e-04  -1.7080e-01  -4.9652e-03;
1.2338e-02   1.1720e+01  -2.6316e+00   8.7582e-04  -3.1604e+01   2.2396e+01;
0            0   1.0000e+00            0            0            0;
0            0            0            0  -3.0000e+01            0;
0            0            0            0            0  -3.0000e+01];
bg = [0     0;
      0     0;
      0     0;
      0     0;
     30     0;
      0    30];
cg = [0     1     0     0     0     0;
      0     0     0     1     0     0];
dg = [0     0;

G s( ) C Is A–( ) 1– B=
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      0     0];
G=ss(ag,bg,cg,dg);

The control variables are elevon and canard actuators (δe and δc). The output 
variables are angle of attack (α) and attitude angle (θ).
.

Aircraft Configuration and Vertical Plane Geometry

This model is good at frequencies below 100 rad/s with less than 30% variation 
between the true aircraft and the model in this frequency range. However as 
noted in [8], it does not reliably capture very high-frequency behaviors, because 
it was derived by treating the aircraft as a rigid body and neglecting lightly 
damped fuselage bending modes that occur at somewhere between 100 and 300 
rad/s. These unmodeled bending modes might cause as much as 20 dB 
deviation (i.e., 1000%) between the frequency response of the model and the 
actual aircraft for frequency ω > 100 rad/s. Other effects like control actuator 
time delays and fuel sloshing also contribute to model inaccuracy at even 
higher frequencies, but the dominant unmodeled effects are the fuselage 
bending modes. You can think of these unmodeled bending modes as 
multiplicative uncertainty of size 20 dB, and design your controller using 
loopsyn, by making sure that the loop has gain less than –20 dB at, and 
beyond, the frequency ω > 100 rad/s.
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Design Specifications
The singular value design specifications are

• Robustness Spec.: –20 dB/decade roll-off slope and –20 dB loop gain at 100 
rad/s

• Performance Spec.: Minimize the sensitivity function as much as possible.

Both specs can be accommodated by taking as the desired loop shape

Gd(s)=8/s

MATLAB® Commands for a LOOPSYN Design
%% Enter the desired loop shape Gd
s=zpk('s'); % Laplace variable s
Gd=8/s; % desired loop shape

%% Compute the optimal loop shaping controller K
[K,CL,GAM]=loopsyn(G,Gd);

%% Compute the loop L, sensitivity S and 
%% complementary sensitivity T:
L=G*K;
I=eye(size(L));
S=feedback(I,L); % S=inv(I+L);
T=I-S;

%% Plot the results:
% step response plots
step(T);title('\alpha and \theta command step responses');

% frequency response plots
figure;
sigma(I+L,'--',T,':',L,'r--',Gd,'k-.',Gd/GAM,'k:',...

Gd*GAM,'k:',{.1,100});grid
legend('1/\sigma(S) performance',...

'\sigma(T) robustness',...
'\sigma(L) loopshape',...
'\sigma(Gd) desired loop',...
'\sigma(Gd) \pm GAM, dB');
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The plots of the resulting step and frequency response for the NASA HiMAT 
loopsyn loop-shaping controller design are shown in the following figure. The 
number ±GAM, dB (i.e., 20log10(GAM) tells you the accuracy with which your 
loopsyn control design matches the target desired loop:

HiMAT Closed Loop Step Responses

σ GK( ) db , Gd db - GAM, db    for ω ωc<,≥

σ GK( ) db , Gd db + GAM, db    for ω ωc.>,≤
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LOOPSYN Design Results for NASA HiMAT
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Fine-Tuning the LOOPSYN Target Loop Shape Gd to Meet Design Goals
If your first attempt at loopsyn design does not achieve everything you wanted, 
you will need to readjust your target desired loop shape Gd. Here are some basic 
design tradeoffs to consider:

• Stability Robustness. Your target loop Gd should have low gain (as small as 
possible) at high frequencies where typically your plant model is so poor that 
its phase angle is completely inaccurate, with errors approaching ±180° or 
more.

• Performance. Your Gd loop should have high gain (as great as possible) at 
frequencies where your model is good, in order to ensure good control 
accuracy and good disturbance attenuation.

• Crossover and Roll-Off. Your desired loop shape Gd should have its 0 dB 
crossover frequency (denoted ωc) between the above two frequency ranges, 
and below the crossover frequency ωc it should roll off with a negative slope 
of between –20 and –40 dB/decade, which helps to keep phase lag to less than 
–180° inside the control loop bandwidth (0 < ω < ωc).

Other considerations that might affect your choice of Gd are the 
right-half-plane poles and zeros of the plant G, which impose fundamental 
limits on your 0 dB crossover frequency ωc [12]. For instance, your 0 dB 
crossover ωc must be greater than the magnitude of any plant right-half-plane 
poles and less than the magnitude of any right-half-plane zeros.

 

If you do not take care to choose a target loop shape Gd that conforms to these 
fundamental constraints, then loopsyn will still compute the optimal 
loop-shaping controller K for your Gd, but you should expect that the optimal 
loop L=G*K will have a poor fit to the target loop shape Gd, and consequently it 
might be impossible to meet your performance goals.

max
Re pi( ) 0>

pi ωc min
Re zi( ) 0>

zi< <
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Using MIXSYN for H-Infinity Loop Shaping
A popular alternative approach to loopsyn loop shaping is H∞ mixed-sensitivity 
loop shaping, which is implemented by the Robust Control Toolbox™ software 
command:

K=mixsyn(G,W1,[],W3)

With mixsyn controller synthesis, your performance and stability robustness 
specifications equations (2-2) and (2-4) are combined into a single infinity norm 
specification of the form

where (see “MIXSYN H• Mixed-Sensitivity Loop Shaping Ty1 u1” on 
page 2-18):

The term  is called a mixed-sensitivity cost function because it 
penalizes both sensitivity S(s) and complementary sensitivity T(s). Loop 
shaping is achieved when you choose W1 to have the target loop shape for 
frequencies ω < ωc, and you choose 1/W3 to be the target for ω > ωc. In choosing 
design specifications W1 and W3 for a mixsyn controller design, you need to 
ensure that your 0 dB crossover frequency for the Bode plot of W1 is below the 
0 dB crossover frequency of 1/W3, as shown in “Singular Value Specifications 
on L, S, and T” on page 2-9, so that there is a gap for the desired loop shape Gd 
to pass between the performance bound W1 and your robustness bound . 
Otherwise, your performance and robustness requirements will not be 
achievable.

Ty1u1 ∞ 1≤

Ty1u1

def W1S
W3T

=

Ty1u1 ∞

W3
1–
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MIXSYN H∞ Mixed-Sensitivity Loop Shaping Ty1 u1

Example: NASA HiMAT Design Using MIXSYN
To do a mixsyn H∞ mixed-sensitivity synthesis design on the HiMAT model, 
start with the plant model G created in “Example: NASA HiMAT Loop 
Shaping” on page 2-11 and type the following commands:

% Set up the performance and robustness bounds W1 & W3
s=zpk('s'); % Laplace variable s
MS=2;AS=.03;WS=5;
W1=(s/MS+WS)/(s+AS*WS);
MT=2;AT=.05;WT=20;
W3=(s+WT/MT)/(AT*s+WT);

% Compute the H-infinity mixed-sensitivity optimal sontroller K1
[K1,CL1,GAM1]=mixsyn(G,W1,[],W3);

% Next compute and plot the closed-loop system.
% Compute the loop L1, sensitivity S1, and comp sensitivity T1:
L1=G*K1;
I=eye(size(L1));
S1=feedback(I,L1); % S=inv(I+L1);
T1=I-S1;

% Plot the results:
% step response plots
step(T1,1.5);
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title('\alpha and \theta command step responses');

% frequency response plots
figure;
sigma(I+L1,'--',T1,':',L1,'r--',... 
W1/GAM1,'k--',GAM1/W3,'k-.',{.1,100});grid
legend('1/\sigma(S) performance',...
'\sigma(T) robustness',...
'\sigma(L) loopshape',...
'\sigma(W1) performance bound',...
'\sigma(1/W3) robustness bound');

The resulting mixsyn singular value plots for the NASA HiMAT model are 
shown below.

MIXSYN Design Results for NASA HiMAT
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Loop-Shaping Commands
Robust Control Toolbox™ software gives you several choices for shaping the 
frequency response properties of multiinput/multioutput (MIMO) feedback 
control loops. Some of the main commands that you are likely to use for 
loop-shaping design, and associated utility functions, are listed below:

MIMO Loop-Shaping Commands

loopsyn H∞ loop-shaping controller synthesis

ltrsyn LQG loop-transfer recovery

mixsyn H∞ mixed-sensitivity controller synthesis

ncfsyn Glover-McFarlane H∞ normalized coprime factor loop- 
shaping controller synthesis

MIMO Loop-Shaping Utility Functions

augw Augmented plant for weighted H2 and H∞ mixed- 
sensitivity control synthesis

makeweight Weights for H∞ mixed sensitivity (mixsyn, augw)

sigma Singular value plots of LTI feedback loops
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Introduction
In the design of robust controllers for complicated systems, model reduction fits 
several goals:

1 To simplify the best available model in light of the purpose for which the 
model is to be used—namely, to design a control system to meet certain spec-
ifications.

2 To speed up the simulation process in the design validation stage, using a 
smaller size model with most of the important system dynamics preserved.

3 Finally, if a modern control method such as LQG or H∞ is used for which the 
complexity of the control law is not explicitly constrained, the order of the 
resultant controller is likely to be considerably greater than is truly needed. 
A good model reduction algorithm applied to the control law can sometimes 
significantly reduce control law complexity with little change in control 
system performance.

Model reduction routines in this toolbox can be put into two categories:

• Additive error method — The reduced-order model has an additive error 
bounded by an error criterion.

• Multiplicative error method — The reduced-order model has a 
multiplicative or relative error bounded by an error criterion.

The error is measured in terms of peak gain across frequency (H∞ norm), and 
the error bounds are a function of the neglected Hankel singular values.

Hankel Singular Values
In control theory, eigenvalues define a system stability, whereas Hankel 
singular values define the “energy” of each state in the system. Keeping larger 
energy states of a system preserves most of its characteristics in terms of 
stability, frequency, and time responses. Model reduction techniques presented 
here are all based on the Hankel singular values of a system. They can achieve 
a reduced-order model that preserves the majority of the system 
characteristics.

Mathematically, given a stable state-space system (A,B,C,D), its Hankel 
singular values are defined as [1]
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where P and Q are controllability and observability grammians satisfying

For example,

rand('state',1234); randn('state',5678);
G = rss(30,4,3);
hankelsv(G)

returns a Hankel singular value plot as follows:

which shows that system G has most of its “energy” stored in states 1 through 
15 or so. Later, you will see how to use model reduction routines to keep a 
15-state reduced model that preserves most of its dynamic response.
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Overview of Model Reduction Techniques
Robust Control Toolbox™ software offers several algorithms for model 
approximation and order reduction. These algorithms let you control the 
absolute or relative approximation error, and are all based on the Hankel 
singular values of the system.

As discussed in previous sections, robust control theory quantifies a system 
uncertainty as either additive or multiplicative types. These model reduction 
routines are also categorized into two groups: additive error and multiplicative 
error types. In other words, some model reduction routines produce a 
reduced-order model Gred of the original model G with a bound on the error 

, the peak gain across frequency. Others produce a reduced-order 

model with a bound on the relative error .

These theoretical bounds are based on the “tails” of the Hankel singular values 
of the model, i.e.,

Additive Error Bound: [1]

where  are denoted the ith Hankel singular value of the original system G.

Multiplicative (Relative) Error Bound: [2]

where  are denoted the ith Hankel singular value of the phase matrix of the 
model G (see the bstmr reference page).

Top-Level Model Reduction Command

Method Description

reduce Main interface to model approximation algorithms

G Gred– ∞

G 1– G Gred–( ) ∞

G Gred– ∞ 2 σi
k 1+

n

∑≤

σi

G 1– G Gred–( ) ∞ 1 2σi 1 σi
2+ σi+( )+( ) 1–

k 1+

n

∏≤

σi
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Normalized Coprime Balanced Model Reduction Command

Method Description

ncfmr Normalized coprime balanced truncation

Additive Error Model Reduction Commands

Method Description

balancmr Square-root balanced model truncation

schurmr Schur balanced model truncation

hankelmr Hankel minimum degree approximation

Multiplicative Error Model Reduction Command

Method Description

bstmr Balanced stochastic truncation

Additional Model Reduction Tools

Method Description

modreal Modal realization and truncation

slowfast Slow and fast state decomposition

stabproj Stable and antistable state projection
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Approximating Plant Models — Additive Error Methods
Given a system in LTI form, the following commands reduce the system to any 
desired order you specify. The judgment call is based on its Hankel singular 
values as shown in the previous paragraph.

rand('state',1234); randn('state',5678);
G = rss(30,4,3);
% balanced truncation to models with sizes 12:16
[g1,info1] = balancmr(G,12:16); % or use reduce
% Schur balanced truncation by specifying `MaxError'
[g2,info2] = schurmr(G,'MaxError',[1,0.8,0.5,0.2]);
sigma(G,'b-',g1,'r--',g2,'g-.')

shows a comparison plot of the original model G and reduced models g1 and g2.

To determine whether the theoretical error bound is satisfied,

norm(G-g1(:,:,1),'inf') % 2.0123
info1.ErrorBound(1) % 2.8529

or plot the model error vs. error bound via the following commands:
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[sv,w] = sigma(G-g1(:,:,1));
loglog(w,sv,w,info1.ErrorBound(1)*ones(size(w)))
xlabel('rad/sec');ylabel('SV');
title('Error Bound and Model Error')
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Approximating Plant Models — Multiplicative Error
Method

In most cases, multiplicative error model reduction method bstmr tends to 
bound the relative error between the original and reduced-order models across 
the frequency range of interest, hence producing a more accurate 
reduced-order model than the additive error methods. This characteristic is 
obvious in system models with low damped poles.

The following commands illustrate the significance of a multiplicative error 
model reduction method as compared to any additive error type. Clearly, the 
phase-matching algorithm using bstmr provides a better fit in the Bode plot.

rand('state',1234); randn('state',5678); G = rss(30,1,1);
[gr,infor] = reduce(G,'algo','balance','order',7);
[gs,infos] = reduce(G,'algo','bst','order',7);
figure(1);bode(G,'b-',gr,'r--'); 
title('Additive Error Method')
figure(2);bode(G,'b-',gs,'r--'); 
title('Relative Error Method')
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Therefore, for some systems with low damped poles/zeros, the balanced 
stochastic method (bstmr) produces a better reduced-order model fit in those 
frequency ranges to make multiplicative error small. Whereas additive error 
methods such as balancmr, schurmr, or hankelmr only care about minimizing 
the overall “absolute” peak error, they can produce a reduced-order model 
missing those low damped poles/zeros frequency regions.
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Using Modal Algorithms

Rigid Body Dynamics
In many cases, a model’s jω-axis poles are important to keep after model 
reduction, e.g., rigid body dynamics of a flexible structure plant or integrators 
of a controller. A unique routine, modreal, serves the purpose nicely.

modreal puts a system into its modal form, with eigenvalues appearing on the 
diagonal of its A-matrix. Real eigenvalues appear in 1-by-1 blocks, and complex 
eigenvalues appear in 2-by-2 real blocks. All the blocks are ordered in 
ascending order, based on their eigenvalue magnitudes, by default, or 
descending order, based on their real parts. Therefore, specifying the number 
of jω-axis poles splits the model into two systems with one containing only 
jω-axis dynamics, the other containing the non-jω axis dynamics.

rand('state',5678); randn('state',1234); G = rss(30,1,1);
[Gjw,G2] = modreal(G,1); % only one rigid body dynamics
G2.d = Gjw.d; Gjw.d = 0; % put DC gain of G into G2
subplot(211);sigma(Gjw);ylabel('Rigid Body')
subplot(212);sigma(G2);ylabel('Nonrigid Body')
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Further model reduction can be done on G2 without any numerical difficulty. 
After G2 is further reduced to Gred, the final approximation of the model is 
simply Gjw+Gred.

This process of splitting jω-axis poles has been built in and automated in all the 
model reduction routines (balancmr, schurmr, hankelmr, bstmr, hankelsv) so 
that users need not worry about splitting the model.

The following single command creates a size 8 reduced-order model from its 
original 30-state model:

rand('state',5678); randn('state',1234); G = rss(30,1,1);
[gr,info] = reduce(G); % choose a size of 8 at prompt
bode(G,'b-',gr,'r--')

Without specifying the size of the reduced-order model, a Hankel singular 
value plot is shown below.
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The default algorithm balancmr of reduce has done a great job of 
approximating a 30-state model with just eight states. Again, the rigid body 
dynamics are preserved for further controller design.
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Reducing Large-Scale Models
For some really large size problems (states > 200), modreal turns out to be the 
only way to start the model reduction process. Because of the size and 
numerical properties associated with those large size, and low damped 
dynamics, most Hankel based routines can fail to produce a good reduced-order 
model.

modreal puts the large size dynamics into the modal form, then truncates the 
dynamic model to an intermediate stage model with a comfortable size of 50 or 
so states. From this point on, those more sophisticated Hankel singular value 
based routines can further reduce this intermediate stage model, in a much 
more accurate fashion, to a smaller size for final controller design.

For a typical 240-state flexible spacecraft model in the spacecraft industry, 
applying modreal and bstmr (or any other additive routines) in sequence can 
reduce the original 240-state plant dynamics to a seven-state three-axis model 
including rigid body dynamics. Any modern robust control design technique 
mentioned in this toolbox can then be easily applied to this smaller size plant 
for a controller design.
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Using Normalized Coprime Factor Methods
A special model reduction routine ncfmr produces a reduced-order model by 
truncating a balanced coprime set of a given model. It can directly simplify a 
modern controller with integrators to a smaller size by balanced truncation of 
the normalized coprime factors. It does not need modreal for 
pre-/postprocessing as the other routines do. However, the integrators will not 
be preserved.

rand('state',5678); randn('state',1234); 
K= rss(30,4,3); % The same model G used in the 1st example
[Kred,info2] = ncfmr(K);
sigma(K,Kred)

Again, without specifying the size of the reduced-order model, any model 
reduction routine presented here will plot a Hankel singular value bar chart 
and prompt you for a reduced model size. In this case, enter 15.

If integral control is important, previously mentioned methods (except ncfmr) 
can nicely preserve the original integrator(s) in the model.
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Uncertainty Modeling
Dealing with and understanding the effects of uncertainty are important tasks 
for the control engineer. Reducing the effects of some forms of uncertainty 
(initial conditions, low-frequency disturbances) without catastrophically 
increasing the effects of other dominant forms (sensor noise, model 
uncertainty) is the primary job of the feedback control system.

Closed-loop stability is the way to deal with the (always present) uncertainty 
in initial conditions or arbitrarily small disturbances.

High-gain feedback in low-frequency ranges is a way to deal with the effects of 
unknown biases and disturbances acting on the process output. In this case, 
you are forced to use roll-off filters in high-frequency ranges to deal with 
high-frequency sensor noise in a feedback system.

Finally, notions such as gain and phase margins (and their generalizations) 
help quantify the sensitivity of stability and performance in the face of model 
uncertainty, which is the imprecise knowledge of how the control input directly 
affects the feedback variables.

Robust Control Toolbox™ software has built-in features allowing you to specify 
model uncertainty simply and naturally. The primary building blocks, called 
uncertain elements or atoms, are uncertain real parameters and uncertain 
linear, time-invariant objects. These can be used to create coarse and simple or 
detailed and complex descriptions of the model uncertainty present within your 
process models.

Once formulated, high-level system robustness tools can help you analyze the 
potential degradation of stability and performance of the closed-loop system 
brought on by the system model uncertainty.

Creating Uncertain Models of Dynamic Systems
The two dominant forms of model uncertainty are as follows:

• Uncertainty in parameters of the underlying differential equation models

• Frequency-domain uncertainty, which often quantifies model uncertainty by 
describing absolute or relative uncertainty in the process’s frequency 
response

Using these two basic building blocks, along with conventional system creation 
commands (such as ss and tf), you can easily create uncertain system models.
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Creating Uncertain Parameters
An uncertain parameter has a name (used to identify it within an uncertain 
system with many uncertain parameters) and a nominal value. Being 
uncertain, it also has variability, described in one of the following ways:

• An additive deviation from the nominal

• A range about the nominal

• A percentage deviation from the nominal

Create a real parameter, with name 'bw', nominal value 5, and a percentage 
uncertainty of 10%.

bw = ureal('bw',5,'Percentage',10)

This creates a ureal object. View its properties using the get command.

Uncertain Real Parameter: Name bw, NominalValue 5, variability = 
[-10  10]%
get(bw)
            Name: 'bw'
    NominalValue: 5
            Mode: 'Percentage'
           Range: [4.5000 5.5000]
       PlusMinus: [-0.5000 0.5000]
      Percentage: [-10 10]
    AutoSimplify: 'basic'

Note that the range of variation (Range property) and the additive deviation 
from nominal (the PlusMinus property) are consistent with the Percentage 
property value.

You can create state-space and transfer function models with uncertain real 
coefficients using ureal objects. The result is an uncertain state-space object, or 
uss. As an example, use the uncertain real parameter bw to model a first-order 
system whose bandwidth is between 4.5 and 5.5 rad/s.

H = tf(1,[1/bw 1])
USS: 1 State, 1 Output, 1 Input, Continuous System
  bw: real, nominal = 5, variability = [-10  10]%, 1 occurrence

Note that the result H is an uncertain system, called a uss object. The nominal 
value of H is a state-space object. Verify that the pole is at –5.
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pole(H.NominalValue)
ans =
    -5

Next, use bode and step to examine the behavior of H.

bode(H,{1e-1 1e2});

−30

−25

−20

−15

−10

−5

0

M
a
g
n
itu

d
e
 (

d
B

)

10
−1

10
0

10
1

10
2

−90

−45

0

P
h
a
se

 (
d
e
g
)

Bode Diagram

Frequency  (rad/sec)



Uncertainty Modeling

4-5

step(H)

While there are variations in the bandwidth and time constant of H, the 
high-frequency rolls off at 20 dB/decade regardless of the value of bw. You can 
capture the more complicated uncertain behavior that typically occurs at high 
frequencies using the ultidyn uncertain element, which is described next.

Quantifying Unmodeled Dynamics
An informal way to describe the difference between the model of a process and 
the actual process behavior is in terms of bandwidth. It is common to hear “The 
model is good out to 8 radians/second.” The precise meaning is not clear, but it 
is reasonable to believe that for frequencies lower than, say, 5 rad/s, the model 
is accurate, and for frequencies beyond, say, 30 rad/s, the model is not 
necessarily representative of the process behavior. In the frequency range 
between 5 and 30, the guaranteed accuracy of the model degrades.

The uncertain linear, time-invariant dynamics object ultidyn can be used to 
model this type of knowledge. An ultidyn object represents an unknown linear 
system whose only known attribute is a uniform magnitude bound on its 
frequency response. When coupled with a nominal model and a 
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frequency-shaping filter, ultidyn objects can be used to capture uncertainty 
associated with the model dynamics.

Suppose that the behavior of the system modeled by H significantly deviates 
from its first-order behavior beyond 9 rad/s, for example, about 5% potential 
relative error at low frequency, increasing to 1000% at high frequency where H 
rolls off. In order to model frequency domain uncertainty as described above 
using ultidyn objects, follow these steps:

1 Create the nominal system Gnom, using tf, ss, or zpk. Gnom itself might 
already have parameter uncertainty. In this case Gnom is H, the first-order 
system with an uncertain time constant.

2 Create a filter W, called the “weight,” whose magnitude represents the 
relative uncertainty at each frequency. The utility makeweight is useful for 
creating first-order weights with specific low- and high-frequency gains, and 
specified gain crossover frequency.

3 Create an ultidyn object Delta with magnitude bound equal to 1.

The uncertain model G is formed by G = Gnom*(1+W*Delta).

If the magnitude of W represents an absolute (rather than relative) uncertainty, 
use the formula G = Gnom + W*Delta instead.

The following commands carry out these steps:

Gnom = H;
W = makeweight(.05,9,10);
Delta = ultidyn('Delta',[1 1]);
G = Gnom*(1+W*Delta)
USS: 2 States, 1 Output, 1 Input, Continuous System
  Delta: 1x1 LTI, max. gain = 1, 1 occurrence
     bw: real, nominal = 5, variability = [-10  10]%, 1 occurrence

Note that the result G is also an uncertain system, with dependence on both 
Delta and bw. You can use bode to make a Bode plot of 20 random samples of 
G's behavior over the frequency range [0.1 100] rad/s.
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bode(G,{1e-1 1e2},25)

In the next section, you design and compare two feedback controllers for G.
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Robustness Analysis
Next, design a feedback controller for G. The goals of this design are the usual 
ones: good steady-state tracking and disturbance rejection properties. Because 
the plant model is nominally a first-order lag, choose a PI control architecture. 
Given the desired closed-loop damping ratio ξ and natural frequency ωn, the 
design equations for KI and KP (based on the nominal open-loop time constant 
of 0.2) are

Follow these steps to design the controller:

1 In order to study how the uncertain behavior of G affects the achievable 
closed-loop bandwidth, design two controllers, both achieving ξ=0.707, with 
different ωn: 3 and 7.5 respectively.

xi = 0.707;
wn = 3;
K1 = tf([(2*xi*wn/5-1) wn*wn/5],[1 0]);
wn = 7.5;
K2 = tf([(2*xi*wn/5-1) wn*wn/5],[1 0]);

Note that the nominal closed-loop bandwidth achieved by K2 is in a region 
where G has significant model uncertainty. It will not be surprising if the 
model variations lead to significant degradations in the closed-loop 
performance.

2 Form the closed-loop systems using feedback.

T1 = feedback(G*K1,1);
T2 = feedback(G*K2,1);

3 Plot the step responses of 20 samples of each closed-loop system.

tfinal = 3;
step(T1,'b',T2,'r',tfinal,20)

KI
ωn

2

5
-------  ,= KP

2ξω2
5

-------------- 1–=
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The step responses for T2 exhibit a faster rise time because K2 sets a higher 
closed loop bandwidth. However, the model variations have a greater effect.

You can use robuststab to check the robustness of stability to the model 
variations. 

[stabmarg1,destabu1,report1] = robuststab(T1);
stabmarg1
stabmarg1 =
        ubound: 4.0241
        lbound: 4.0241
    destabfreq: 3.4959
[stabmarg2,destabu2,report2] = robuststab(T2);
stabmarg2
stabmarg2 =
        ubound: 1.2545
        lbound: 1.2544
    destabfreq: 10.5249
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The stabmarg variable gives lower and upper bounds on the stability margin.    
A stability margin greater than 1 means the system is stable for all values of 
the modeled uncertainty. A stability margin less than 1 means there are 
allowable values of the uncertain elements that make the system unstable. The 
report variable briefly summarizes the analysis.

report1
report1 =
Uncertain System is robustly stable to modeled uncertainty.            
 -- It can tolerate up to 402% of modeled uncertainty.                 
 -- A destabilizing combination of 402% the modeled uncertainty 
exists, causing an instability at 3.5 rad/s.                               
report2
report2 =
Uncertain System is robustly stable to modeled uncertainty.            
 -- It can tolerate up to 125% of modeled uncertainty.                 
 -- A destabilizing combination of 125% the modeled uncertainty 
exists, causing an instability at 10.5 rad/s.                              

While both systems are stable for all variations, their performance is clearly 
affected to different degrees. To determine how the uncertainty affects 
closed-loop performance, you can use wcgain to compute the worst-case effect 
of the uncertainty on the peak magnitude of the closed-loop sensitivity 
(S=1/(1+GK)) function. This peak gain is typically correlated with the amount 
of overshoot in a step response.

To do this, form the closed-loop sensitivity functions and call wcgain. 

S1 = feedback(1,G*K1);
S2 = feedback(1,G*K2);
[maxgain1,wcu1] = wcgain(S1);
maxgain1
maxgain1 =
      lbound: 1.8684
      ubound: 1.9025
    critfreq: 3.5152
[maxgain2,wcu2] = wcgain(S2);
maxgain2
maxgain2 =
      lbound: 4.6031
      ubound: 4.6671
    critfreq: 11.0231
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The maxgain variable gives lower and upper bounds on the worst-case peak 
gain of the sensitivity transfer function, as well as the specific frequency where 
the maximum gain occurs. The wcu variable contains specific values of the 
uncertain elements that achieve this worst-case behavior.

You can use usubs to substitute these worst-case values for uncertain 
elements, and compare the nominal and worst-case behavior. Use bodemag and 
step to make the comparison.

bodemag(S1.NominalValue,'b',usubs(S1,wcu1),'b');
hold on
bodemag(S2.NominalValue,'r',usubs(S2,wcu2),'r');
hold off

Clearly, while K2 achieves better nominal sensitivity than K1, the nominal 
closed-loop bandwidth extends too far into the frequency range where the 
process uncertainty is very large. Hence the worst-case performance of K2 is 
inferior to K1 for this particular uncertain model.

The next section explores these robustness analysis tools further on a 
multiinput, multioutput system.
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Multiinput, Multioutput Robustness Analysis
The previous sections focused on simple uncertainty models of single-input and 
single-output systems, predominantly from a transfer function perspective. 
You can also create uncertain state-space models made up of uncertain 
state-space matrices. Moreover, all the analysis tools covered thus far can be 
applied to these systems as well.

Consider, for example, a two-input, two-output, two-state system whose model 
has parametric uncertainty in the state-space matrices. First create an 
uncertain parameter p. Using the parameter, make uncertain A and C matrices. 
The B matrix happens to be not-uncertain, although you will add frequency 
domain input uncertainty to the model in“Adding Independent Input 
Uncertainty to Each Channel” on page 4-13.

p = ureal('p',10,'Percentage',10);
A = [0 p;-p 0];
B = eye(2);
C = [1 p;-p 1];
H = ss(A,B,C,[0 0;0 0]);

You can view the properties of the uncertain system H using the get command. 

get(H)
               a: [2x2 umat]
               b: [2x2 double]
               c: [2x2 umat]
               d: [2x2 double]
       StateName: {2x1 cell}
              Ts: 0
       InputName: {2x1 cell}
      OutputName: {2x1 cell}
      InputGroup: [1x1 struct]
     OutputGroup: [1x1 struct]
    NominalValue: [2x2 ss]
     Uncertainty: [1x1 atomlist]
           Notes: {}
        UserData: []

The properties a, b, c, d, and StateName behave in exactly the same manner as 
ss objects. The properties InputName, OutputName, InputGroup, and 
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OutputGroup behave in exactly the same manner as all the system objects (ss, 
zpk, tf, and frd). The NominalValue is an ss object.

Adding Independent Input Uncertainty 
to Each Channel
The model for H does not include actuator dynamics. Said differently, the 
actuator models are unity-gain for all frequencies.

Nevertheless, the behavior of the actuator for channel 1 is modestly uncertain 
(say 10%) at low frequencies, and the high-frequency behavior beyond 20 rad/s 
is not accurately modeled. Similar statements hold for the actuator in channel 
2, with larger modest uncertainty at low frequency (say 20%) but accuracy out 
to 45 rad/s.

Use ultidyn objects Delta1 and Delta2 along with shaping filters W1 and W2 to 
add this form of frequency domain uncertainty to the model.

W1 = makeweight(.1,20,50);
W2 = makeweight(.2,45,50);
Delta1 = ultidyn('Delta1',[1 1]);
Delta2 = ultidyn('Delta2',[1 1]);
G = H*blkdiag(1+W1*Delta1,1+W2*Delta2)
USS: 4 States, 2 Outputs, 2 Inputs, Continuous System
  Delta1: 1x1 LTI, max. gain = 1, 1 occurrence
  Delta2: 1x1 LTI, max. gain = 1, 1 occurrence
       p: real, nominal = 10, variability = [-10  10]%, 2 
occurrences

Note that G is a two-input, two-output uncertain system, with dependence on 
three uncertain elements, Delta1, Delta2, and p. It has four states, two from H 
and one each from the shaping filters W1 and W2, which are embedded in G.

You can plot a 2-second step response of several samples of G. The 10% 
uncertainty in the natural frequency is obvious.
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step(G,2)

You can create a Bode plot of 50 samples of G. The high-frequency uncertainty 
in the model is also obvious. For clarity, start the Bode plot beyond the 
resonance.
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bode(G,{13 100},50)

Closed-Loop Robustness Analysis
You need to load the controller and verify that it is two-input and two-output.

load mimoKexample
size(K)
State-space model with 2 outputs, 2 inputs, and 9 states.

You can use the command loopsens to form all the standard plant/controller 
feedback configurations, including sensitivity and complementary sensitivity 
at both the input and output. Because G is uncertain, all the closed-loop 
systems are uncertain as well.
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F = loopsens(G,K)
F =
     Poles: [13x1 double]
    Stable: 1
        Si: [2x2 uss]
        Ti: [2x2 uss]
        Li: [2x2 uss]
        So: [2x2 uss]
        To: [2x2 uss]
        Lo: [2x2 uss]
       PSi: [2x2 uss]
       CSo: [2x2 uss]

F is a structure with many fields. The poles of the nominal closed-loop system 
are in F.Poles, and F.Stable is 1 if the nominal closed-loop system is stable. 
In the remaining 10 fields, S stands for sensitivity, T for complementary 
sensitivity, and L for open-loop gain. The suffixes i and o refer to the input and 
output of the plant (G). Finally, P and C refer to the “plant” and “controller.”

Hence Ti is mathematically the same as

while Lo is G*K, and CSo is mathematically the same as

You can examine the transmission of disturbances at the plant input to the 
plant output using bodemag on F.PSi. Graph 50 samples along with the 
nominal.

K I GK+( ) 1– G

K I GK+( ) 1–
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bodemag(F.PSi,':/-',{1e-1 100},50)

Nominal Stability Margins
You can use loopmargin to investigate loop-at-a-time gain and phase margins, 
loop-at-a-time disk margins, and simultaneous multivariable margins. They 
are computed for the nominal system and do not reflect the uncertainty models 
within G.

Explore the simultaneous margins individually at the plant input, individually 
at the plant output, and simultaneously at both input and output.

[I,DI,SimI,O,DO,SimO,Sim] = loopmargin(G,K);

The third output argument is the simultaneous gain and phase variations 
allowed in all input channels to the plant.

SimI
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SimI =
     GainMargin: [0.1180 8.4769]
    PhaseMargin: [-76.5441 76.5441]
      Frequency: 6.2287

This information implies that the gain at the plant input can vary in both 
channels independently by factors between (approximately) 1/8 and 8, as well 
as phase variations up to 76 degrees.

The sixth output argument is the simultaneous gain and phase variations 
allowed in all output channels to the plant.

SimO
SimO =
     GainMargin: [0.1193 8.3836]
    PhaseMargin: [-76.3957 76.3957]
      Frequency: 18.3522

Note that the simultaneous margins at the plant output are similar to those at 
the input. This is not always the case in multiloop feedback systems.

The last output argument is the simultaneous gain and phase variations 
allowed in all input and output channels to the plant. As expected, when you 
consider all such variations simultaneously, the margins are somewhat 
smaller than those at the input or output alone.

Sim
Sim =
     GainMargin: [0.5671 1.7635]
    PhaseMargin: [-30.8882 30.8882]
      Frequency: 18.3522

Nevertheless, these numbers indicate a generally robust closed-loop system, 
able to tolerate significant gain (more than +/-50% in each channel) and 30 
degree phase variations simultaneously in all input and output channels of the 
plant.

Robustness of Stability Model Uncertainty
With loopmargin, you determined various margins of the nominal, multiloop 
system. These margins are computed only for the nominal system, and do not 
reflect the uncertainty explicitly modeled by the ureal and ultidyn objects. 
When you work with detailed, complex uncertain system models, the 
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conventional margins computed by loopmargin might not always be indicative 
of the actual stability margins associated with the uncertain elements. You can 
use robuststab to check the stability margin of the system to these specific 
modeled variations.

In this example, use robuststab to compute the stability margin of the 
closed-loop system represented by Delta1, Delta2, and p.

Use any of the closed-loop systems within F = loopsens(G,K). All of them, 
F.Si, F.To, etc., have the same internal dynamics, and hence the stability 
properties are the same.

[stabmarg,desgtabu,report] = robuststab(F.So);
stabmarg
stabmarg =
        ubound: 2.2175
        lbound: 2.2175
    destabfreq: 13.7576
report
report =
Uncertain System is robustly stable to modeled uncertainty.            
 -- It can tolerate up to 222% of modeled uncertainty.                 
 -- A destabilizing combination of 222% the modeled uncertainty 
exists, causing an instability at 13.8 rad/s.

This analysis confirms what the loopmargin analysis suggested. The 
closed-loop system is quite robust, in terms of stability, to the variations 
modeled by the uncertain parameters Delta1, Delta2, and p. In fact, the 
system can tolerate more than twice the modeled uncertainty without losing 
closed-loop stability.

The next section studies the effects of these variations on the closed-loop output 
sensitivity function.
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Worst-Case Gain Analysis
You can plot the Bode magnitude of the nominal output sensitivity function. It 
clearly shows decent disturbance rejection in all channels at low frequency.

bodemag(F.So.NominalValue,{1e-1 100})

You can compute the peak value of the maximum singular value of the 
frequency response matrix using norm.

[PeakNom,freq] = norm(F.So.NominalValue,'inf')
PeakNom =
    1.1317
freq = 
    7.0483

The peak is about 1.13, occurring at a frequency of 36 rad/s.

−60

−50

−40

−30

−20

−10

0

10
From: In(1)

T
o

: 
O

u
t(

1
)

10
−1

10
0

10
1

10
2

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

T
o

: 
O

u
t(

2
)

From: In(2)

10
−1

10
0

10
1

10
2

Bode Diagram

Frequency  (rad/sec)

M
a

g
n

it
u

d
e

 (
d

B
)



Worst-Case Gain Analysis

4-21

What is the maximum output sensitivity gain that is achieved when the 
uncertain elements Delta1, Delta2, and p vary over their ranges? You can use 
wcgain to answer this.

[maxgain,wcu] = wcgain(F.So);
maxgain
maxgain =
      lbound: 2.1017
      ubound: 2.1835
    critfreq: 8.5546

The analysis indicates that the worst-case gain is somewhere between 2.1 and 
2.2. The frequency where the peak is achieved is about 8.5.

You can replace the values for Delta1, Delta2, and p that achieve the gain of 
2.1, using usubs. Make the substitution in the output complementary 
sensitivity, and do a step response.

step(F.To.NominalValue,usubs(F.To,wcu),5)

The perturbed response, which is the worst combination of uncertain values in 
terms of output sensitivity amplification, does not show significant 
degradation of the command response. The settling time is increased by about 
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50%, from 2 to 4, and the off-diagonal coupling is increased by about a factor of 
about 2, but is still quite small.
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Summary of Robustness Analysis Tools 

Function Description

ureal Create uncertain real parameter.

ultidyn Create uncertain, linear, time-invariant dynamics.

uss Create uncertain state-space object from uncertain 
state-space matrices.

ufrd Create uncertain frequency response object.

loopsens Compute all relevant open and closed-loop quantities for a 
MIMO feedback connection.

loopmargin Compute loop-at-a-time as well as MIMO gain and phase 
margins for a multiloop system, including the simultaneous 
gain/phase margins.

robustperf Robustness performance of uncertain systems.

robuststab Compute the robust stability margin of a nominally stable 
uncertain system.

wcgain Compute the worst-case gain of a nominally stable 
uncertain system.

wcmargin Compute worst-case (over uncertainty) loop-at-a-time 
disk-based gain and phase margins.

wcsens Compute worst-case (over uncertainty) sensitivity of 
plant-controller feedback loop.
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H-Infinity Performance

Performance as Generalized Disturbance Rejection
The modern approach to characterizing closed-loop performance objectives is to 
measure the size of certain closed-loop transfer function matrices using various 
matrix norms. Matrix norms provide a measure of how large output signals can 
get for certain classes of input signals. Optimizing these types of performance 
objectives over the set of stabilizing controllers is the main thrust of recent 
optimal control theory, such as L1, H2, H∞, and optimal control. Hence, it is 
important to understand how many types of control objectives can be posed as 
a minimization of closed-loop transfer functions.

Consider a tracking problem, with disturbance rejection, measurement noise, 
and control input signal limitations, as shown in “Generalized and Weighted 
Performance Block Diagram” on page 5-4. K is some controller to be designed 
and G is the system you want to control.

Typical Closed-Loop Performance Objective

A reasonable, though not precise, design objective would be to design K to keep 
tracking errors and control input signal small for all reasonable reference 
commands, sensor noises, and external force disturbances.

Hence, a natural performance objective is the closed-loop gain from exogenous 
influences (reference commands, sensor noise, and external force disturbances) 
to regulated variables (tracking errors and control input signal). Specifically, 
let T denote the closed-loop mapping from the outside influences to the 
regulated variables:

K G

�
reference � � �

�� noise

�

�

�control
input

external force
disturbance

�
tracking
error

�

e

e
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You can assess performance by measuring the gain from outside influences to 
regulated variables. In other words, good performance is associated with T 
being small. Because the closed-loop system is a multiinput, multioutput 
(MIMO) dynamic system, there are two different aspects to the gain of T:

• Spatial (vector disturbances and vector errors)

• Temporal (dynamic relationship between input/output signals)

Hence the performance criterion must account for 

• Relative magnitude of outside influences

• Frequency dependence of signals

• Relative importance of the magnitudes of regulated variables

So if the performance objective is in the form of a matrix norm, it should 
actually be a weighted norm

||WLTWR||

where the weighting function matrices WL and WR are frequency dependent, to 
account for bandwidth constraints and spectral content of exogenous signals. A 
natural (mathematical) manner to characterize acceptable performance is in 
terms of the MIMO ||⋅||∞ (H∞) norm. See “Interpretation of H-Infinity Norm” on 
page 5-28 for an interpretation of the H∞ norm and signals.

Interconnection with Typical MIMO Performance Objectives
The closed-loop performance objectives are formulated as weighted closed-loop 
transfer functions that are to be made small through feedback. A generic 
example, which includes many relevant terms, is shown in block diagram form 
in “Generalized and Weighted Performance Block Diagram” on page 5-4. In the 
diagram, G denotes the plant model and K is the feedback controller.

tracking error
control input

T
reference

external force
noise

=

regulated variables outside influences
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Generalized and Weighted Performance Block Diagram

The blocks in this figure might be scalar (SISO) and/or multivariable (MIMO), 
depending on the specific example. The mathematical objective of H∞ control 
is to make the closed-loop MIMO transfer function Ted satisfy ||Ted||∞ < 1. The 
weighting functions are used to scale the input/output transfer functions such 
that when ||Ted||∞ < 1, the relationship between  and  is suitable.

Performance requirements on the closed-loop system are transformed into the 
H∞ framework with the help of weighting or scaling functions. Weights are 
selected to account for the relative magnitude of signals, their frequency 
dependence, and their relative importance. This is captured in the figure 
above, where the weights or scalings [Wcmd, Wdist,Wsnois] are used to transform 
and scale the normalized input signals [d1,d2,d3] into physical units defined as 
[d1, d2, d3]. Similarly weights or scalings [Wact, Wperf1,Wperf2] transform and 

d̃ ẽ
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scale physical units into normalized output signals [e1, e2, e3]. An 
interpretation of the signals, weighting functions, and models follows.

Wcmd
Wcmd is included in H∞ control problems that require tracking of a reference 
command. Wcmd shapes the normalized reference command signals 
(magnitude and frequency) into the actual (or typical) reference signals that 
you expect to occur. It describes the magnitude and the frequency dependence 
of the reference commands generated by the normalized reference signal. 
Normally Wcmd is flat at low frequency and rolls off at high frequency. For 
example, in a flight control problem, fighter pilots generate stick input 
reference commands up to a bandwidth of about 2 Hz. Suppose that the stick 
has a maximum travel of three inches. Pilot commands could be modeled as 
normalized signals passed through a first-order filter:

Signal Meaning

d1 Normalized reference command

Typical reference command in physical units

d2 Normalized exogenous disturbances

Typical exogenous disturbances in physical units

d3 Normalized sensor noise

Typical sensor noise in physical units

e1 Weighted control signals

Actual control signals in physical units

e2 Weighted tracking errors

Actual tracking errors in physical units

e3 Weighted plant errors

Actual plant errors in physical units

d̃1

d̃2

d̃3

ẽ1

ẽ2

ẽ3



5 H-Infinity and Mu Synthesis

5-6

Wmodel
Wmodel represents a desired ideal model for the closed-looped system and is 
often included in problem formulations with tracking requirements. Inclusion 
of an ideal model for tracking is often called a model matching problem, i.e., the 
objective of the closed-loop system is to match the defined model. For good 
command tracking response, you might want the closed-loop system to respond 
like a well-damped second-order system. The ideal model would then be

 

for specific desired natural frequency ω and desired damping ratio ζ. Unit 
conversions might be necessary to ensure exact correlation between the ideal 
model and the closed-loop system. In the fighter pilot example, suppose that 
roll-rate is being commanded and 10°/second response is desired for each inch 
of stick motion. Then, in these units, the appropriate model is:

Wdist
Wdist shapes the frequency content and magnitude of the exogenous 
disturbances affecting the plant. For example, consider an electron microscope 
as the plant. The dominant performance objective is to mechanically isolate the 
microscope from outside mechanical disturbances, such as ground excitations, 
sound (pressure) waves, and air currents. You can capture the spectrum and 
relative magnitudes of these disturbances with the transfer function weighting 
matrix Wdist.

Wperf1
Wperf1 weights the difference between the response of the closed-loop system 
and the ideal model Wmodel. Often you might want accurate matching of the 
ideal model at low frequency and require less accurate matching at higher 
frequency, in which case Wperf1 is flat at low frequency, rolls off at first or 
second order, and flattens out at a small, nonzero value at high frequency. The 
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inverse of the weight is related to the allowable size of tracking errors, when 
dealing with the reference commands and disturbances described by Wref and 
Wdist.

Wperf2
Wperf2 penalizes variables internal to the process G, such as actuator states 
that are internal to G or other variables that are not part of the tracking 
objective.

Wact
Wact is used to shape the penalty on control signal use. Wact is a frequency 
varying weighting function used to penalize limits on the deflection/position, 
deflection rate/velocity, etc., response of the control signals, when dealing with 
the tracking and disturbance rejection objectives defined above. Each control 
signal is usually penalized independently.

Wsnois
Wsnois represents frequency domain models of sensor noise. Each sensor 
measurement feedback to the controller has some noise, which is often higher 
in one frequency range than another. The Wsnois weight tries to capture this 
information, derived from laboratory experiments or based on manufacturer 
measurements, in the control problem. For example, medium grade 
accelerometers have substantial noise at low frequency and high frequency. 
Therefore the corresponding Wsnois weight would be larger at low and high 
frequency and have a smaller magnitude in the mid-frequency range. 
Displacement or rotation measurement is often quite accurate at low frequency 
and in steady state, but responds poorly as frequency increases. The weighting 
function for this sensor would be small at low frequency, gradually increase in 
magnitude as a first- or second-order system, and level out at high frequency.

Hsens
Hsens represents a model of the sensor dynamics or an external antialiasing 
filter. The transfer functions used to describe Hsens are based on physical 
characteristics of the individual components. These models might also be 
lumped into the plant model G.

This generic block diagram has tremendous flexibility and many control 
performance objectives can be formulated in the H∞ framework using this 
block diagram description. 
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Robustness in the H∞ Framework
Performance and robustness tradeoffs in control design were discussed in the 
context of multivariable loop shaping in “Tradeoff Between Performance and 
Robustness” on page 2-2. In the H∞ control design framework, you can include 
robustness objectives as additional disturbance to error transfer functions — 
disturbances to be kept small. Consider the following figure of a closed-loop 
feedback system with additive and multiplicative uncertainty models. 

The transfer function matrices are defined as:

where TI(s) denotes the input complementary sensitivity function and SO(s) 
denotes the output sensitivity function. Theorems 1 and 2 in Chapter 2 give 
bounds on the size of the transfer function matrices from z1 to w1 and z2 to w2 
to ensure that the closed-loop system is robust to multiplicative uncertainty, 
ΔM(s), at the plant input, and additive uncertainty, ΔA(s), around the plant 
G(s). In the H∞ control problem formulation, the robustness objectives enter 
the synthesis procedure as additional input/output signals to be kept small. 
The interconnection with the uncertainty blocks removed follows.
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The H∞ control robustness objective is now in the same format as the 
performance objectives, that is, to minimize the H∞ norm of the transfer matrix 
from z, [z1,z2], to w, [w1,w2].

Weighting or scaling matrices are often introduced to shape the frequency and 
magnitude content of the sensitivity and complementary sensitivity transfer 
function matrices. Let WM correspond to the multiplicative uncertainty and WA 
correspond to the additive uncertainty model. ΔM(s) and ΔA(s) are assumed to 
be a norm bounded by 1, i.e., |ΔM(s)|<1 and |ΔA(s)|<1. Hence as a function of 
frequency, |WM(jω)| and |WA(jω)| are the respective sizes of the largest 
anticipated additive and multiplicative plant perturbations.

The multiplicative weighting or scaling WM represents a percentage error in 
the model and is often small in magnitude at low frequency, between 0.05 and 
0.20 (5% to 20% modeling error), and growing larger in magnitude at high 
frequency, 2 to 5 ((200% to 500% modeling error). The weight will transition by 
crossing a magnitude value of 1, which corresponds to 100% uncertainty in the 
model, at a frequency at least twice the bandwidth of the closed-loop system. A 
typical multiplicative weight is

By contrast, the additive weight or scaling WA represents an absolute error 
that is often small at low frequency and large in magnitude at high frequency. 
The magnitude of this weight depends directly on the magnitude of the plant 
model, G(s).

WM 0.10

1
5
---s 1+

1
200
----------s 1+
-----------------------=
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Application of H-Infinity and Mu to Active Suspension 
Control

Conventional passive suspensions employ a spring and damper between the 
car body and wheel assembly, representing a tradeoff between conflicting 
performance metrics such as passenger comfort, road holding, and suspension 
deflection. Active suspensions allow the designer to balance these objectives 
using a hydraulic actuator, controlled by feedback, between the chassis and 
wheel assembly.

In this section, you design an active suspension system for a quarter car body 
and wheel assembly model using the H∞ control design technique. You will see 
the tradeoff between passenger comfort, i.e., minimizing car body travel, 
versus suspension travel as the performance objective.

Quarter Car Suspension Model
The quarter car model shown is used to design active suspension control laws.

The sprung mass ms represents the car chassis, while the unsprung mass mus 
represents the wheel assembly. The spring, ks, and damper, bs, represent a 
passive spring and shock absorber that are placed between the car body and 
the wheel assembly, while the spring kt serves to model the compressibility of 
the pneumatic tire. The variables xs, xus, and r are the car body travel, the 
wheel travel, and the road disturbance, respectively. The force fs, kN, applied 
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between the sprung and unsprung masses, is controlled by feedback and 
represents the active component of the suspension system. The dynamics of the 
actuator are ignored in this example, and assume that the control signal is the 
force fs . Defining x1:=xs, , x3:=xus and , the following is the 
state-space description of the quarter car dynamics.

The following component values are taken from reference [Lin97].

ms = 290;    % kg
mus = 59;    % kg
bs = 1000;   % N/m/s
ks = 16182 ; % N/m
kt = 190000; % N/m

A linear, time-invariant model of the quarter car model, qcar, is constructed 
from the equations of motion and parameter values. The inputs to the model 
are the road disturbance and actuator force, respectively, and the outputs are 
the car body deflection, acceleration, and suspension deflection.

A12 = [ 0 1 0 0; [-ks -bs ks bs]/ms ];
A34 = [ 0 0 0 1; [ks bs -ks-kt -bs]/mus];
B12 = [0 0; 0 10000/ms];
B34 = [0 0; [kt -10000]/mus];
C   = [1 0 0 0; A12(2,:); 1 0 -1 0; 0 0 0 0];
D   = [0 0; B12(2,:); 0 0; 0 1];
qcar = ss([A12; A34],[B12; B34],C,D)

It is well known [Hedrick90] that the acceleration transfer function has an 
invariant point at the tirehop frequency, 56.7 rad/s. Similarly, the suspension 
deflection transfer function has an invariant point at the rattlespace frequency, 
23.3 rad/s. The tradeoff between passenger comfort and suspension deflection 
is because it is not possible to simultaneously keep both transfer functions 
small around the tirehop frequency and in the low frequency range.

x2: xs
·= x4: x· us=

x1
· x2  ,=

x2
· 1

ms
------- ks x1 x3–( ) bs x2 x4–( ) fs–+[ ]–  ,=

x3
· x4  ,=

x4
· 1

mus
---------- ks x1 x3–( ) bs x2 x4–( ) kt x3 r–( ) fs––+[ ].=
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Linear H∞ Controller Design 
The design of linear suspension controllers that emphasize either passenger 
comfort or suspension deflection. The controllers in this section are designed 
using linear H∞ synthesis [FialBal]. As is standard in the H∞ framework, the 
performance objectives are achieved via minimizing weighted transfer function 
norms.

Weighting functions serve two purposes in the H∞ framework: They allow the 
direct comparison of different performance objectives with the same norm, and 
they allow for frequency information to be incorporated into the analysis. For 
more details on H∞ control design, refer to [DGKF], [Fran1], [GloD], [SkoP], 
and [Zame]. A block diagram of the H∞ control design interconnection for the 
active suspension problem is shown below.

The measured output or feedback signal y is the suspension deflection x1−x3. 
The controller acts on this signal to produce the control input, the hydraulic 
actuator force fs. The block Wn serves to model sensor noise in the 
measurement channel. Wn is set to a sensor noise value of 0.01 m.

Wn = 0.01;

In a more realistic design, Wn would be frequency dependent and would serve 
to model the noise associated with the displacement sensor. The weight Wref is 
used to scale the magnitude of the road disturbances. Assume that the 
maximum road disturbance is 7 cm and hence choose Wref = 0.07.

Wref = 0.07;

��� ���

����
�

�
�

��

�

��

�

����

���

�

�

������

���

�

� ��

��

��

�� � ��

��
��

� � �	
�

��



Application of H-Infinity and Mu to Active Suspension Control

5-13

The magnitude and frequency content of the control force fs are limited by the 

weighting function Wact. Choose . The magnitude of the 

weight increases above 50 rad/s in order to limit the closed-loop bandwidth.

Wact = (100/13)*tf([1 50],[1 500]);

H∞ Control Design 1
The purpose of the weighting functions  and is to keep the car 
deflection and the suspension deflection small over the desired frequency 
ranges. In the first design, you are designing the controller for passenger 
comfort, and hence the car body deflection x1 is penalized.

Wx1 = 8*tf(2*pi*5,[1 2*pi*5]);

The weight magnitude rolls off above 5×2π rad/s to respect a well-known H∞ 
design rule of thumb that requires the performance weights to roll off before an 
open-loop zero (56.7 rad/s in this case). The suspension deflection weight 

 is not included in this control problem formulation.

You can construct the weighted H∞ plant model for control design, denoted 
qcaric1, using the sysic command. The control signal corresponds to the last 
input to qcaric1, fs. The car body acceleration, which is noisy, is the measured 
signal and corresponds to the last output of qcaric1.

systemnames = 'qcar Wn Wref Wact Wx1';
inputvar = '[ d1; d2; fs ]';
outputvar = '[ Wact; Wx1; qcar(3)+Wn ]';
input_to_qcar = '[ Wref; fs]';
input_to_Wn = '[ d2 ]';
input_to_Wref = '[ d1 ]';
input_to_Wact = '[ fs ]';
input_to_Wx1 = '[ qcar(1) ]';
qcaric1 = sysic;

An H∞ controller is synthesized with the hinfsyn command. There is one 
control input, the hydraulic actuator force, and one measurement signal, the 
car body acceleration. 

ncont = 1;
nmeas = 1;
[K1,Scl1,gam1] = hinfsyn(qcaric1,nmeas,ncont);

Wact
100
13

---------- s 50+
s 500+
-------------------=

Wx1
Wx1 x3–

Wx1 x3–
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CL1 = lft(qcar([1:4 3],1:2),K1); 
sprintf('H-infinity controller K1 achieved a norm of %2.5g',gam1) 
ans = 
H-infinity controller K1 achieved a norm of 0.61043 

You can analyze the H∞ controller by constructing the closed-loop feedback 
system CL1. Bode magnitude plots of the passive suspension and active 
suspension are shown in the following figure.

bodemag(qcar(3,1),'k-.',CL1(3,1),'r-',logspace(0,2.3,140))

H∞ Control Design 2
In the second design, you are designing the controller to keep the suspension 
deflection transfer function small. Hence the road disturbance to suspension 
deflection x1−x3 is penalized via the weighting function Wx1x3. The Wx1x3 
weight magnitude rolls off above 10 rad/s to roll off before an open-loop zero 
(23.3 rad/s) in the design. 

Wx1x3 = 25*tf(1,[1/10 1]); 
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The car deflection weight  is not included in this control problem 
formulation. You can construct the weighted H∞ plant model for control design, 
denoted qcaric2, using the sysic command. As an alternative, you can create 
qcaric2 using iconnect objects. The same control and measurements are 
used as in the first design. 

M = iconnect; 
d = icsignal(2); 
fs = icsignal(1); 
ycar = icsignal(size(qcar,1)); 
M.Equation{1} = equate(ycar,qcar*[Wref*d(1); fs]); 
M.Input = [d;fs]; 
M.Output = [Wact*fs;Wx1x3*ycar(1);ycar(2)+Wn*d(2)]; 
qcaric2 = M.System; 

The second H∞ controller is synthesized with the hinfsyn command. 

[K2,Scl2,gam2] = hinfsyn(qcaric2,nmeas,ncont); 
CL2 = lft(qcar([1:4 2],1:2),K2); 
sprintf('H-infinity controller K2 achieved a norm of %2.5g',gam2) 
ans = 
H-infinity controller K2 achieved a norm of 0.89949 

Recall that this H∞ control design emphasizes minimization of suspension 
deflection over passenger comfort, whereas the first H∞ design focused on 
passenger comfort. 

You can analyze the H∞ controller by constructing the closed-loop feedback 
system CL2. Bode magnitude plots of the transfer function from road 
disturbance to suspension deflection for both controllers and the passive 
suspension system are shown in the following figure.

bodemag(qcar(3,1),'k-.',CL1(3,1),'r-',CL2(3,1),'b.',...

Wx1



5 H-Infinity and Mu Synthesis

5-16

   logspace(0,2.3,140))

The dotted and solid lines in the figure are the closed-loop frequency responses 
that result from the different performance weighting functions selected. 
Observe the reduction in suspension deflection in the vicinity of the tirehop 
frequency, ω1= 56.7 rad/s, and the corresponding increase in the acceleration 
frequency response in this vicinity. Also, compared to design 1, a reduction in 
suspension deflection has been achieved for frequencies below the rattlespace 
frequency, ω2= 23.3 rad/s. 

The second H∞ control design attenuates both resonance modes, whereas the 
first controller focused its efforts on the first mode, the rattlespace frequency 
at 23.3 rad/s.

bodemag(qcar(2,1),'k-.',CL1(2,1),'r-',CL2(2,1),'b.',...
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   logspace(0,2.3,140))

All the analysis till now has been in the frequency domain. Time-domain 
performance characteristics are critical to the success of the active suspension 
system on the car. Time response plots of the two H∞ controllers are shown in 
following figures. The dashed, solid, and dotted lines correspond to the passive 
suspension, H∞ controller 1, and controller 2 respectively. All responses 
correspond to the road disturbance r(t)

where a=0.025 corresponds to a road bump of peak magnitude 5 cm. Observe 
that the acceleration response of design 1 to the 5 cm bump is very good; 
however the suspension deflection is larger than for design 2. This is because 
suspension deflection was not penalized in this design. The suspension 
deflection response of design 2 to a 5 cm bump is good; however the acceleration 
response to the 5 cm bump is much inferior to design 1 (see the figure). Once 
again this is because car body displacement and acceleration were not 
penalized in design 2.

r(t)    a 1 8πtcos–( )  0 t 0.25˜ sec≤ ≤,=
           0 otherwise =
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time = 0:0.005:1;
roaddist = 0*time;
roaddist(1:51) = 0.025*(1-cos(8*pi*time(1:51)));
[p1,t] = lsim(qcar(1:4,1),roaddist,time);
[y1,t] = lsim(CL1(1:4,1),roaddist,time);
[y2,t] = lsim(CL2(1:4,1),roaddist,time);
subplot(221)
plot(t,y1(:,1),'b-',t,y2(:,1),'r.',t,p1(:,1),'k--',t,...
roaddist,'g-.')
 title('Body Travel')
 ylabel('x_1 (m)')
subplot(222)
 plot(t,y1(:,2),'b-',t,y2(:,2),'r.',t,p1(:,2),'k--')
 title('Body Acceleration')
 ylabel('Accel (m/s/s)')
subplot(223)
 plot(t,y1(:,3),'b-',t,y2(:,3),'r.',t,p1(:,3),'k--')
 title('Suspension Deflection')
 xlabel('Time (sec)')
 ylabel('x_1 - x_3 (m)')
subplot(224)
 plot(t,y1(:,4),'b-',t,y2(:,4),'r.',t,p1(:,4),'k--')
 title('Control Force')
 xlabel('Time (sec)')
 ylabel('fs (10kN)')
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Designs 1 and 2 represent extreme ends of the performance tradeoff spectrum. 
This section described synthesis of H∞ to achieve the performance objectives on 
the active suspension system. Equally, if not more important, is the design of 
controllers robust to model error or uncertainty.

The goal of every control design is to achieve the desired performance 
specifications on the nominal model as well as other plants that are close to the 
nominal model. In other words, you want to achieve the performance objectives 
in the presence of model error or uncertainty. This is called robust performance. 
In the next section, you will design a controller that achieves robust 
performance using the μ-synthesis control design methodology. The active 
suspension system again serves as the example. Instead of assuming a perfect 
actuator, a nominal actuator model with modeling error is introduced into the 
control problem.

Control Design via μ-Synthesis
The active suspension H∞ controllers designed in the previous section ignored 
the hydraulic actuator dynamics. In this section, you will include a first-order 
model of the hydraulic actuator dynamics as well as an uncertainty model to 
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account for differences between the actuator model and the actual actuator 
dynamics. 

The nominal model for the hydraulic actuator is

actnom = tf(1,[1/60 1]); 

The actuator model itself is uncertain. You can describe the actuator model 
error as a set of possible models using a weighting function. At low frequency, 
below 4 rad/s, it can vary up to 10% from its nominal value. Around 4 rad/s the 
percentage variation starts to increase and reaches 400% at approximately 800 
rad/s. The model uncertainty is represented by the weight Wunc, which 
corresponds to the frequency variation of the model uncertainty and the 
uncertain LTI dynamic object Δunc defined as unc. 

Wunc = 0.10*tf([1/4 1],[1/800 1]); 
unc = ultidyn('unc',[1 1]); 
actmod = actnom*(1+ Wunc*unc) 
USS: 2 States, 1 Output, 1 Input, Continuous System 
  unc: 1x1 LTI, max. gain = 1, 1 occurrence 

The actuator model actmod is an uncertain state-space system. The following 
Bode plot shows the nominal actuator model, actnom, denoted with a '+' 
symbol, and 20 random actuator models described by actmod. 

actnom 1
1
60
------s 1+
-------------------=
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 bode(actnom,'r+',actmod,'b',logspace(-1,3,120)) 

The uncertain actuator model actmod represents the model of the hydraulic 
actuator used for control. The revised control design interconnection diagram 
is
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You are designing the controller for passenger comfort, as in the first H∞ 
control design, hence the car body deflection x1 is penalized with Wx1. The 
uncertain weighted H∞ plant model for control design, denoted qcaricunc, is 
using the sysic command. As previously described, the control signal 
corresponds to the last input to qcaric1, fs. The car body acceleration, which 
is noisy, is the measured signal and corresponds to the last output of 
qcaricunc. 

systemnames = 'qcar Wn Wref Wact Wx1 actmod'; 
inputvar = '[ d1; d2; fs ]'; 
outputvar = '[ Wact; Wx1; qcar(2)+Wn ]'; 
input_to_actmod = '[ fs ]'; 
input_to_qcar = '[ Wref; fs]'; 
input_to_Wn = '[ d2 ]'; 
input_to_Wref = '[ d1 ]'; 
input_to_Wact = '[ fs ]'; 
input_to_Wx1 = '[ qcar(1) ]'; 
qcaricunc = sysic; 

A μ-synthesis controller is synthesized using D−K iteration with the dksyn 
command. The D−K iteration procedure is an approximation to μ-synthesis 
that attempts to synthesize a controller that achieves robust performance 
[SteD], [BalPac], [PacDB], [SkoP]. There is one control input, the hydraulic 
actuator force, and one measurement signal, the car body acceleration. 

[Kdk,CLdk,gdk] = dksyn(qcaricunc,nmeas,ncont); 
CLdkunc = lft(qcar([1:4 2],1:2)*blkdiag(1,actmod),Kdk); 
sprintf('mu-synthesis controller Kdk achieved a norm of 
%2.5g',gdk) 
ans = 
mu-synthesis controller Kdk achieved a norm of 0.53946 

You can analyze the performance of the μ-synthesis controller by constructing 
the closed-loop feedback system CLdkunc. Bode magnitude plots of the passive 
suspension and active suspension systems on the nominal actuator model with 
H∞ design 1 and the μ-synthesis controller are shown in the following figure. 
Note that the μ-synthesis controller better attenuates the first resonant mode 
at the expense of decreased performance below 3 rad/s.

bodemag(qcar(3,1),'k-.',CL1(3,1),'r-',CLmuunc.Nominal(3,1),'b.',
...
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   logspace(0,2.3,140))

It is important to understand how robust both controllers are in the presence 
of model error. You can simulate the active suspension system with the H∞ 
design 1 and the μ-synthesis controller. The uncertain closed-loop systems, 
CL1unc and CLdkunc, are formed with K1 and Kdk, respectively. For each 
uncertain system, 40 random plant models in the model set are simulated. As 
you can see, both controllers are robust and perform well in the presence of 
actuator model error. The μ-synthesis controller Kdk achieves slightly better 
performance than H∞ design 1. 

CL1unc = lft(qcar([1:4 2],1:2)*blkdiag(1,actmod),K1); 
[CLdkunc40,dksamples] = usample(CLdkunc,40); 
CL1unc40 = usubs(CL1unc,dksamples); 
nsamp = 40;
for i=1:nsamp
   [ymusamp,t]  = lsim(CLmuunc40(1:4,1,i),roaddist,time);
   plot(t,ymusamp(:,1),'b')
   hold on
end
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[ymusamp,t]  = lsim(CLmuunc.Nominal(1:4,1),roaddist,time);
plot(t,ymusamp(:,1),'r+',t,roaddist,'m--')

for i=1:nsamp
      [y1samp,t] = lsim(CL1unc40(1:4,1,i),roaddist,time);
      plot(t,y1samp(:,1),'b')
      hold on
   end
   [y1samp,t]  = lsim(CL1unc.Nominal(1:4,1),roaddist,time);
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plot(t,y1samp(:,1),'r+',t,roaddist,'m--')
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Functions for Control Design
The term control system design refers to the process of synthesizing a feedback 
control law that meets design specifications in a closed-loop control system. 
The design methods are iterative, combining parameter selection with 
analysis, simulation, and insight into the dynamics of the plant. Robust 
Control Toolbox™ software provides a set of commands that you can use for a 
broad range of multivariable control applications, including

• H2 control design

• H∞ standard and loop-shaping control design

• H∞ normalized coprime factor control design

• Mixed H2/H∞ control design

• μ-synthesis via D−K iteration

• Sampled-data H∞ control design

These functions cover both continuous and discrete-time problems. The 
following table summarizes the H2 and H∞ control design commands. 

Function Description

augw Augments plant weights for mixed-sensitivity control 
design

h2hinfsyn Mixed H2/H∞ controller synthesis 

h2syn H2 controller synthesis

hinfsyn H∞ controller synthesis

loopsyn H∞ loop-shaping controller synthesis

ltrsyn Loop-transfer recovery controller synthesis

mixsyn H∞ mixed-sensitivity controller synthesis

ncfsyn H∞ normalized coprime factor controller synthesis

sdhinfsyn Sample-data H∞ controller synthesis



Functions for Control Design

5-27

The following table summarizes μ-synthesis via D−K iteration control design 
commands. 

Function Description

dksyn Synthesis of a robust controller via μ-synthesis

dkitopt Create a dksyn options object 

drawmag Interactive mouse-based sketching and fitting tool

fitfrd Fit scaling frequency response data with LTI model

fitmagfrd Fit scaling magnitude data with stable, minimum-phase 
model
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Interpretation of H-Infinity Norm 

Norms of Signals and Systems
There are several ways of defining norms of a scalar signal e(t) in the time 
domain. We will often use the 2-norm, (L2-norm), for mathematical 
convenience, which is defined as

If this integral is finite, then the signal e is square integrable, denoted as e ∈ 
L2. For vector-valued signals,

the 2-norm is defined as

In μ-tools the dynamic systems we deal with are exclusively linear, with 
state-space model

or, in the transfer function form,

e(s) = T(s)d(s),T(s):= C(sI – A)–1B + D

Two mathematically convenient measures of the transfer matrix T(s) in the 
frequency domain are the matrix H2 and H∞ norms,

e 2 := e t( )2 td
∞–

∞

∫⎝ ⎠
⎛ ⎞

1
2
---

e t( )

e1 t( )

e2 t( )

en t( )

=

…

eT
∞–

∞∫ t( )e t( )dt( )

1
2
---

=

e 2 := e t( ) 2
2

∞–
∞∫ dt( )

1
2
---

x·

e
A B
C D

x
d

=
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where the Frobenius norm (see the MATLAB® norm command) of a complex 
matrix M is

Both of these transfer function norms have input/output time-domain 
interpretations. If, starting from initial condition x(0) = 0, two signals d and e 
are related by

then

• For d, a unit intensity, white noise process, the steady-state variance of e is 
||T||2.

• The L2 (or RMS) gain from ,

is equal to ||T||∞. This is discussed in greater detail in the next section.

Using Weighted Norms to Characterize 
Performance
Any performance criterion must also account for

• Relative magnitude of outside influences

• Frequency dependence of signals

• Relative importance of the magnitudes of regulated variables

So, if the performance objective is in the form of a matrix norm, it should 
actually be a weighted norm

||WLTWR||

T 2 := 1
2π
------ T jω( ) F

2 dω
∞–

∞

∫
1
2
---

T ∞:= maxσ T jω( )[ ]
w R∈

M F := trace M*M( )

x·

e
A B
C D

x
d

=

d e→

max
e 2
d 2

-----------
d 0≠
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where the weighting function matrices WL and WR are frequency dependent, to 
account for bandwidth constraints and spectral content of exogenous signals. 
The most natural (mathematical) manner to characterize acceptable 
performance is in terms of the MIMO ||⋅||∞ (H∞) norm. For this reason, this 
section now discusses some interpretations of the H∞ norm.

Unweighted MIMO System

Suppose T is a MIMO stable linear system, with transfer function matrix T(s). 
For a given driving signal , define  as the output, as shown below.

Note that it is more traditional to write the diagram in “Unweighted MIMO 
System: Vectors from Left to Right” on page 5-30 with the arrows going from 
left to right as in “Weighted MIMO System” on page 5-32.

Unweighted MIMO System: Vectors from Left to Right

The two diagrams shown above represent the exact same system. We prefer to 
write these block diagrams with the arrows going right to left to be consistent 
with matrix and operator composition.

Assume that the dimensions of T are ne × nd. Let β > 0 be defined as

(6-1)

Now consider a response, starting from initial condition equal to 0. In that case, 
Parseval’s theorem gives that

T
��

�e �d

d̃ t( ) ẽ

T
��
�e�d

β := T ∞ := maxσ T jω( )[ ]
w R∈

ẽ 2

d̃ 2
-----------

ẽT t( )ẽ t( ) td
0
∞∫[ ]

1 2⁄

d̃
T

t( )d̃ t( ) td
0
∞∫

1 2⁄
----------------------------------------------------- β≤=
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Moreover, there are specific disturbances d that result in the ratio  

arbitrarily close to β. Because of this, ||T||∞ is referred to as the L2 (or RMS) gain 

of the system.

As you would expect, a sinusoidal, steady-state interpretation of ||T||∞ is also 

possible: For any frequency , any vector of amplitudes , and any 

vector of phases , with ||a||2 ≤ 1, define a time signal

Applying this input to the system T results in a steady-state response  of the 
form

The vector  will satisfy ||b||2 ≤ β. Moreover, β, as defined in “Weighted 
MIMO System” on page 5-32, is the smallest number such that this is true for 
every ||a||2 ≤ 1, , and φ.

Note that in this interpretation, the vectors of the sinusoidal magnitude 
responses are unweighted, and measured in Euclidean norm. If realistic 
multivariable performance objectives are to be represented by a single MIMO 
||⋅||∞ objective on a closed-loop transfer function, additional scalings are 
necessary. Because many different objectives are being lumped into one matrix 
and the associated cost is the norm of the matrix, it is important to use 
frequency-dependent weighting functions, so that different requirements can 
be meaningfully combined into a single cost function. Diagonal weights are 
most easily interpreted.

ẽ 2

d̃ 2
-----------

ω R∈ a Rnd
∈

φ Rnd∈

d̃ t( )
a1 ωt φ1+( )sin

and
ωt φnd

+( )sin

=

…

ẽss

ẽss t( )
b1 ωt 1+( )sin

bne
ωt ne

+( )sin

= …

b Rne∈

ω
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Consider the diagram of “Weighted MIMO System” on page 5-32, along with 
“Unweighted MIMO System: Vectors from Left to Right” on page 5-30.

Assume that WL and WR are diagonal, stable transfer function matrices, with 
diagonal entries denoted Li and Ri.

Weighted MIMO System

Bounds on the quantity ||WLTWR||∞ will imply bounds about the sinusoidal 

steady-state behavior of the signals and  in the diagram of 
“Unweighted MIMO System: Vectors from Left to Right” on page 5-30. 

Specifically, for sinusoidal signal , the steady-state relationship between 

,  and ||WLTWR||∞ is as follows. The steady-state solution , denoted 

as

(5-1)

satisfies for all sinusoidal input signals  of the form

WL

L1 0 … 0

0 L2 … 0

0 0 … Lne

=

…… …

...
WR

R1 0 … 0

0 R2 … 0

0 0 … Rnd

=

…… …

...
,

WL T WR
����

e d�d�e

e � WL�e � WLT
�d � WLTWRd

d̃ ẽ(= Td̃)

d̃

ẽ(= Td̃) d̃ ẽss

ẽss t( )
ẽ1 ωt 1+( )sin

ẽne
ωt nd

+( )sin

= …

ϕ

ϕ

WLi
jw( )ẽi

2 1≤
i 1=
ne∑ d̃
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(5-2)

satisfying

if and only if ||WLTWR||∞ ≤ 1.

This approximately (very approximately — the next statement is not actually 
correct) implies that ||WLTWR||∞ ≤ 1 if and only if for every fixed frequency , 

and all sinusoidal disturbances  of the form (5-2) satisfying

the steady-state error components will satisfy

This shows how one could pick performance weights to reflect the desired 
frequency-dependent performance objective. Use WR to represent the relative 

magnitude of sinusoids disturbances that might be present, and use  to 

represent the desired upper bound on the subsequent errors that are produced. 

Remember, however, that the weighted H∞ norm does not actually give 

element-by-element bounds on the components of  based on 

element-by-element bounds on the components of . The precise bound it gives 

is in terms of Euclidean norms of the components of  and  (weighted 
appropriately by WL(j ) and WR(j )).

d̃ t( )
d̃1 ωt φi+( )sin

d̃nd
ωt φnd

+( )sin

= …

d̃i
2

WRi
jω( ) 2

---------------------------
i 1=

nd

∑ 1≤

ω

d̃

d̃i WRi
jω( )≤

ẽi
1

WLi
jω( )

------------------------≤

1
WL
---------

ẽ

d̃

ẽ d̃
ω ω
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